Suppr超能文献

腮腺肿瘤的表观扩散系数直方图分析在鉴别诊断中的应用。

The histogram analysis of apparent diffusion coefficient in differential diagnosis of parotid tumor.

机构信息

Department of Radiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.

School of Nuclear Science and Engineering, Shanghai JiaoTong University, Shanghai, China.

出版信息

Dentomaxillofac Radiol. 2020 Jul;49(5):20190420. doi: 10.1259/dmfr.20190420. Epub 2020 Mar 9.

Abstract

OBJECTIVES

Use apparent diffusion coefficient (ADC) histogram to investigate whether the parameters of ADC histogram can distinguish between benign and malignant tumors and further differentiate the tumor subgroups.

METHODS AND MATERIALS

This study retrospectively enrolls 161 patients with parotid gland tumors. Histogram parameters including mean, inhomogeneity, skewness, kurtosis and 10th, 25th, 50th, 75th, 90th percentiles are derived from ADC mono-exponential model. Mann-Whitney test is used to compare the differences between benign and malignant groups. Kruskal-Wallis test with post-hoc Dunn-Bonferroni method is used for subgroup classification, then receiver operating characteristic curve analysis is performed in mean ADC value to obtain the appropriate cutoff values.

RESULTS

Except for kurtosis and 90th percentile, there are significant differences in all other ADC parameters between benign and malignant groups. In subgroup classification of benign tumors, there are significant differences in all ADC parameters between pleomorphic adenoma and Warthin's tumor (area under curve 0.988; sensitivity 93.8%; specificity 94.7%; all s < 0.05). Pleomorphic adenoma has high value in mean than basal cell adenoma (area under curve 0.819; sensitivity 76.9%; specificity 76.9%; < 0.05). Basal cell adenoma has high values in mean (area under curve 0.897; sensitivity 92.3%; specificity 78.9%; all s < 0.05) and 10th, 25th, 50th percentiles than Warthin's tumor. In subgroup classification of malignant tumors, low-risk parotid carcinomas have higher values than hematolymphoid tumors in mean (area under curve 0.912; sensitivity 84.6%; specificity 100%, all s < 0.05) and 10th, 25th percentiles.

CONCLUSION

ADC histogram parameters, especially mean and 10th, 25th percentiles, can potentially be an effective indicator for identifying and classifying parotid tumors.

摘要

目的

利用表观扩散系数(ADC)直方图研究参数能否区分良恶性肿瘤,并进一步对肿瘤亚组进行区分。

方法与材料

本研究回顾性纳入 161 例腮腺肿瘤患者。从 ADC 单指数模型中提取直方图参数,包括平均值、异质性、偏度、峰度及 10%、25%、50%、75%、90%百分位数。采用 Mann-Whitney 检验比较良恶性组间的差异。采用 Kruskal-Wallis 检验,组间两两比较采用 post-hoc Dunn-Bonferroni 法,然后在平均 ADC 值的受试者工作特征曲线分析中获得适当的截断值。

结果

除峰度和 90%百分位数外,良性和恶性组间所有其他 ADC 参数均有显著差异。在良性肿瘤的亚组分类中,多形性腺瘤与沃辛瘤之间所有 ADC 参数均有显著差异(曲线下面积 0.988;敏感性 93.8%;特异性 94.7%;均 s<0.05)。多形性腺瘤的平均 ADC 值高于基底细胞腺瘤(曲线下面积 0.819;敏感性 76.9%;特异性 76.9%;均 s<0.05)。基底细胞腺瘤的平均(曲线下面积 0.897;敏感性 92.3%;特异性 78.9%;均 s<0.05)及 10%、25%、50%百分位数高于沃辛瘤。在恶性肿瘤的亚组分类中,低危涎腺癌的平均(曲线下面积 0.912;敏感性 84.6%;特异性 100%;均 s<0.05)及 10%、25%百分位数高于血液淋巴肿瘤。

结论

ADC 直方图参数,尤其是平均值和 10%、25%百分位数,可能是鉴别和分类腮腺肿瘤的有效指标。

相似文献

引用本文的文献

5

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验