Suppr超能文献

木质纤维素含氧化合物的加氢脱氧反应网络。

Hydro(deoxygenation) Reaction Network of Lignocellulosic Oxygenates.

机构信息

Molecular Catalysis & Energy (MCR) Laboratory, Amity Institute Click Chemistry Research & Studies (AICCRS), Amity University, Sector 125, Noida, 201303, India.

出版信息

ChemSusChem. 2020 Jun 8;13(11):2894-2915. doi: 10.1002/cssc.202000247. Epub 2020 Apr 30.

Abstract

Hydrodeoxygenation (HDO) is a key transformation step to convert lignocellulosic oxygenates into drop-in and functional high-value hydrocarbons through controlled oxygen removal. Nevertheless, the mechanistic insights of HDO chemistry have been scarcely investigated as opposed to a significant extent of hydrodesulfurization chemistry. Current requirements emphasize certain underexplored events of HDO of oxygenates, which include 1) interactions of oxygenates of varied molecular size with active sites of the catalysts, 2) determining the conformation of oxygenates on the active site at the point of interaction, and 3) effects of oxygen contents of oxygenates on the reaction rate of HDO. It is realized that the molecular interactions of oxygenates with the surface of the catalyst dominates the degree and nature of deoxygenation to derive products with desired selectivity by overcoming complex separation processes in a biorefinery. Those oxygenates with high carbon numbers (>C10), multiple furan rings, and branched architectures are even more complex to understand. This article aims to focus on concise mechanistic analysis of biorefinery oxygenates (C ) for their deoxygenation processes, with a special emphasis on their interactions with active sites in a complex chemical environment. This article also addresses differentiation of the mode of interactions based on the molecular size of oxygenates. Deoxygenation processes coupled with or without ring opening of furan-based oxygenates and site-substrate cooperativity dictate the formation of diverse value-added products. Oxygen removal has been the key step for microbial deoxygenation by the use of oxygen-removing decarbonylase enzymes. However, challenges to obtain branched and long-chain hydrocarbons remain, which require special attention, including the invention of newer techniques to upgrade the process for combined depolymerization-HDO from real biomass.

摘要

加氢脱氧(HDO)是将木质纤维素中的含氧化合物转化为可替代的高附加值烃类化合物的关键转化步骤,通过控制氧的去除来实现。然而,与加氢脱硫化学相比,HDO 化学的机理研究还很少。目前的要求强调了 HDO 含氧物中某些未被充分探索的反应,包括 1)不同分子大小的含氧物与催化剂活性位的相互作用,2)确定含氧物在活性位上相互作用点的构象,3)含氧物中氧含量对 HDO 反应速率的影响。人们认识到,含氧物与催化剂表面的分子相互作用决定了脱氧的程度和性质,通过克服生物炼制中复杂的分离过程,得到具有所需选择性的产物。那些碳原子数较高(>C10)、具有多个呋喃环和支链结构的含氧物更难以理解。本文旨在对生物炼制含氧物(C )的脱氧过程进行简明的机理分析,特别关注它们在复杂化学环境中与活性位的相互作用。本文还根据含氧物的分子大小来区分相互作用的模式。含呋喃基含氧物的脱氧过程以及开环过程与协同作用决定了不同增值产品的形成。通过使用脱碳酶去除氧的微生物脱氧已成为去除氧的关键步骤。然而,获得支链和长链烃类的挑战仍然存在,需要特别关注,包括发明新的技术来升级从实际生物质中进行联合解聚-HDO 的过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验