DuChene Joseph S, Tagliabue Giulia, Welch Alex J, Li Xueqian, Cheng Wen-Hui, Atwater Harry A
Nano Lett. 2020 Apr 8;20(4):2348-2358. doi: 10.1021/acs.nanolett.9b04895. Epub 2020 Mar 10.
We report the light-induced modification of catalytic selectivity for photoelectrochemical CO reduction in aqueous media using copper (Cu) nanoparticles dispersed onto p-type nickel oxide (p-NiO) photocathodes. Optical excitation of Cu nanoparticles generates hot electrons available for driving CO reduction on the Cu surface, while charge separation is accomplished by hot-hole injection from the Cu nanoparticles into the underlying p-NiO support. Photoelectrochemical studies demonstrate that optical excitation of plasmonic Cu/p-NiO photocathodes imparts increased selectivity for CO reduction over hydrogen evolution in aqueous electrolytes. Specifically, we observed that plasmon-driven CO reduction increased the production of carbon monoxide and formate, while simultaneously reducing the evolution of hydrogen. Our results demonstrate an optical route toward steering the selectivity of artificial photosynthetic systems with plasmon-driven photocathodes for photoelectrochemical CO reduction in aqueous media.
我们报道了使用分散在p型氧化镍(p-NiO)光阴极上的铜(Cu)纳米颗粒,对水性介质中光电化学CO还原的催化选择性进行光诱导改性。Cu纳米颗粒的光激发产生可用于驱动Cu表面CO还原的热电子,而电荷分离是通过从Cu纳米颗粒向底层p-NiO载体注入热空穴来实现的。光电化学研究表明,等离子体Cu/p-NiO光阴极的光激发赋予了在水性电解质中CO还原相对于析氢更高的选择性。具体而言,我们观察到等离子体驱动的CO还原增加了一氧化碳和甲酸盐的产生,同时减少了氢气的析出。我们的结果展示了一条通过等离子体驱动的光阴极来控制人工光合系统选择性的光学途径,用于水性介质中的光电化学CO还原。