Schichtl Zebulon G, Carvalho O Quinn, Tan Jeiwan, Saund Simran S, Ghoshal Debjit, Wilder Logan M, Gish Melissa K, Nielander Adam C, Stevens Michaela Burke, Greenaway Ann L
Materials Chemical and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States.
Chem Rev. 2025 May 28;125(10):4768-4839. doi: 10.1021/acs.chemrev.4c00258. Epub 2025 May 6.
Since its inception, photoelectrochemistry has sought to power the generation of fuels, particularly hydrogen, using energy from sunlight. Efficient and durable photoelectrodes, however, remain elusive. Here we review the current state of the art, focusing our discussion on advances in photoelectrodes made in the past decade. We open by briefly discussing fundamental photoelectrochemical concepts and implications for photoelectrode function. We next review a broad range of semiconductor photoelectrodes broken down by material class (oxides, nitrides, chalcogenides, and mature photovoltaic semiconductors), identifying intrinsic properties and discussing their influence on performance. We then identify innovative in situ and operando techniques to directly probe the photoelectrode|electrolyte interface, enabling direct assessment of structure-property relationships for catalytic surfaces in active reaction environments. We close by considering more complex photoelectrochemical fuel-forming reactions (carbon dioxide and nitrogen reduction, as well as alternative oxidation reactions), where product selectivity imposes additional criteria on electrochemical driving force and photoelectrode architecture. By contextualizing recent literature within a fundamental framework, we seek to provide direction for continued progress toward achieving efficient and stable fuel-forming photoelectrodes.
自成立以来,光电化学一直致力于利用太阳能为燃料(特别是氢气)的生成提供动力。然而,高效且耐用的光电极仍然难以实现。在此,我们回顾当前的技术水平,将讨论重点放在过去十年中光电极取得的进展上。我们首先简要讨论基本的光电化学概念及其对光电极功能的影响。接下来,我们按材料类别(氧化物、氮化物、硫族化物和成熟的光伏半导体)对广泛的半导体光电极进行综述,确定其固有特性并讨论它们对性能的影响。然后,我们确定创新的原位和操作技术,以直接探测光电极|电解质界面,从而能够在活性反应环境中直接评估催化表面的结构-性能关系。最后,我们考虑更复杂的光电化学燃料形成反应(二氧化碳和氮还原以及替代氧化反应),其中产物选择性对电化学驱动力和光电极结构提出了额外的标准。通过将近期文献置于一个基本框架中,我们旨在为实现高效稳定的燃料形成光电极的持续进展提供方向。