Yuan Lin, Bourgeois Briley B, Carlin Claire C, da Jornada Felipe H, Dionne Jennifer A
Department of Materials Science and Engineering, Stanford University School of Engineering, Stanford, CA, 94305, USA.
Department of Applied Physics, Stanford University School of Humanities and Sciences, Stanford, CA, 94305, USA.
Nanophotonics. 2023 May 30;12(14):2745-2762. doi: 10.1515/nanoph-2023-0149. eCollection 2023 Jul.
There is a pressing global need to increase the use of renewable energy sources and limit greenhouse gas emissions. Towards this goal, highly efficient and molecularly selective chemical processes that operate under mild conditions are critical. Plasmonic photocatalysis uses optically-resonant metallic nanoparticles and their resulting plasmonic, electronic, and phononic light-matter interactions to drive chemical reactions. The promise of simultaneous high-efficiency and product-selective reactions with plasmon photocatalysis provides a compelling opportunity to rethink how chemistry is achieved. Plasmonic nanoparticles serve as nanoscale 'antennas' that enable strong light-matter interactions, surpassing the light-harvesting capabilities one would expect purely from their size. Complex composite structures, combining engineered light harvesters with more chemically active components, are a focal point of current research endeavors. In this review, we provide an overview of recent advances in plasmonic catalysis. We start with a discussion of the relevant mechanisms in photochemical transformations and explain hot-carrier generation and distributions from several ubiquitous plasmonic antennae. Then we highlight three important types of catalytic processes for sustainable chemistry: ammonia synthesis, hydrogen production and CO reduction. To help elucidate the reaction mechanism, both state-of-art electromagnetic calculations and quantum mechanistic calculations are discussed. This review provides insights to better understand the mechanism of plasmonic photocatalysis with a variety of metallic and composite nanostructures toward designing and controlling improved platforms for green chemistry in the future.
全球迫切需要增加可再生能源的使用并限制温室气体排放。为实现这一目标,在温和条件下运行的高效且具有分子选择性的化学过程至关重要。等离子体光催化利用光学共振金属纳米颗粒及其产生的等离子体、电子和声子光物质相互作用来驱动化学反应。等离子体光催化同时实现高效和产物选择性反应的前景为重新思考化学如何实现提供了一个极具吸引力的机会。等离子体纳米颗粒充当纳米级“天线”,能够实现强光物质相互作用,超越了仅从其尺寸所预期的光捕获能力。将工程化光捕获器与化学活性更强的组分相结合的复杂复合结构是当前研究工作的重点。在这篇综述中,我们概述了等离子体催化的最新进展。我们首先讨论光化学转化中的相关机制,并解释几种常见等离子体天线中的热载流子产生和分布。然后我们重点介绍可持续化学的三种重要催化过程:氨合成、制氢和一氧化碳还原。为了帮助阐明反应机制,我们还讨论了最新的电磁计算和量子力学计算。这篇综述有助于更好地理解各种金属和复合纳米结构的等离子体光催化机制,以便未来设计和控制改进的绿色化学平台。