Omar Ganesh Ji, Li Mengsha, Chi Xiao, Huang Zhen, Lim Zhi Shiuh, Prakash Saurav, Zeng Shengwei, Li Changjian, Yu Xiaojiang, Tang Chunhua, Song Dongsheng, Rusydi Andrivo, Venkatesan Thirumalai, Pennycook Stephen John, Ariando Ariando
Department of Physics, National University of Singapore, 117542 Singapore.
NUSNNI-NanoCore, National University of Singapore, 117411 Singapore.
Nano Lett. 2020 Apr 8;20(4):2493-2499. doi: 10.1021/acs.nanolett.9b05231. Epub 2020 Mar 11.
Using interlayer interaction to control functional heterostructures with atomic-scale designs has become one of the most effective interface-engineering strategies nowadays. Here, we demonstrate the effect of a crystalline LaFeO buffer layer on amorphous and crystalline LaAlO/SrTiO heterostructures. The LaFeO buffer layer acts as an energetically favored electron acceptor in both LaAlO/SrTiO systems, resulting in modulation of interfacial carrier density and hence metal-to-insulator transition. For amorphous and crystalline LaAlO/SrTiO heterostructures, the metal-to-insulator transition is found when the LaFeO layer thickness crosses 3 and 6 unit cells, respectively. Such different critical LaFeO thicknesses are explained in terms of distinct characteristic lengths of the redox-reaction-mediated and polar-catastrophe-dominated charge transfer, controlled by the interfacial atomic contact and Thomas-Fermi screening effect, respectively. Our results not only shed light on the complex interlayer charge transfer across oxide heterostructures but also provide a new route to precisely tailor the charge-transfer process at a functional interface.
利用层间相互作用通过原子尺度设计来控制功能异质结构已成为当今最有效的界面工程策略之一。在此,我们展示了晶体LaFeO缓冲层对非晶态和晶态LaAlO/SrTiO异质结构的影响。LaFeO缓冲层在两个LaAlO/SrTiO系统中均作为能量上有利的电子受体,导致界面载流子密度的调制,进而引发金属-绝缘体转变。对于非晶态和晶态LaAlO/SrTiO异质结构,当LaFeO层厚度分别超过3个和6个晶胞时,会出现金属-绝缘体转变。这种不同的临界LaFeO厚度分别通过由界面原子接触和托马斯-费米屏蔽效应控制的氧化还原反应介导和极性突变主导的电荷转移的不同特征长度来解释。我们的结果不仅揭示了跨氧化物异质结构的复杂层间电荷转移,还提供了一条在功能界面精确调控电荷转移过程的新途径。