Svetnik Vladimir, Wang Ting-Chuan, Xu Yuting, Hansen Bryan J, V Fox Steven
Merck & Co., Inc., Kenilworth, NJ, USA.
Merck & Co., Inc., Kenilworth, NJ, USA.
J Neurosci Methods. 2020 May 1;337:108668. doi: 10.1016/j.jneumeth.2020.108668. Epub 2020 Mar 2.
Experimental investigation of sleep-wake dynamics in animals is an important part of pharmaceutical development. Typically, it involves recording of electroencephalogram, electromyogram, locomotor activity, and electrooculogram. Visual identification, or scoring, of the sleep-wake states from these recordings is time-consuming. We sought to develop software for automated sleep-wake scoring capable of processing large databases of multi-channel signal recordings in a range of species.
We used a large historical database of signal recordings and scores in non-human primates, dogs, mice, and rats, to develop a deep Convolutional Neural Network (CNN) classification algorithm for automatically scoring sleep-wake states. We compared the performance of the CNN algorithm with that of a widely used Machine Learning algorithm, Random Forest (RF).
CNN accuracy in sleep-wake scoring of data in non-human primates and dogs was significantly higher than RF accuracy (0.75 vs. 0.66 for non-human primates and 0.73 vs. 0.64 for dogs). In rodents, the difference between CNN and RF was smaller: 0.83 vs. 0.81 for mice and 0.78 vs. 0.77 for rats. The variability of CNN accuracy was lower than that of RF for non-human primates, dogs and mice but similar for rats.
Deep Learning algorithms have not been previously evaluated across a range of species for animal sleep-wake scoring.
We recommend use of CNN for sleep-wake scoring in non-human primates and dogs, and RF for sleep-wake scoring in rodents.
动物睡眠-觉醒动态的实验研究是药物研发的重要组成部分。通常,这涉及脑电图、肌电图、运动活动和眼电图的记录。从这些记录中目视识别或评分睡眠-觉醒状态很耗时。我们试图开发一种用于自动睡眠-觉醒评分的软件,该软件能够处理一系列物种的多通道信号记录的大型数据库。
我们使用了一个包含非人类灵长类动物、狗、小鼠和大鼠的信号记录和评分的大型历史数据库,来开发一种深度卷积神经网络(CNN)分类算法,用于自动对睡眠-觉醒状态进行评分。我们将CNN算法的性能与一种广泛使用的机器学习算法——随机森林(RF)的性能进行了比较。
CNN对非人类灵长类动物和狗的数据进行睡眠-觉醒评分的准确率显著高于RF的准确率(非人类灵长类动物为0.75对0.66,狗为0.73对0.64)。在啮齿动物中,CNN和RF之间的差异较小:小鼠为0.83对0.81,大鼠为0.78对0.77。对于非人类灵长类动物、狗和小鼠,CNN准确率的变异性低于RF,但对于大鼠则相似。
深度学习算法此前尚未在一系列物种中针对动物睡眠-觉醒评分进行评估。
我们建议在非人类灵长类动物和狗的睡眠-觉醒评分中使用CNN,在啮齿动物的睡眠-觉醒评分中使用RF。