Suppr超能文献

通过多路可见性图和深度学习实现宽场钙成像数据的自动睡眠状态分类。

Automated sleep state classification of wide-field calcium imaging data via multiplex visibility graphs and deep learning.

机构信息

Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.

Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.

出版信息

J Neurosci Methods. 2022 Jan 15;366:109421. doi: 10.1016/j.jneumeth.2021.109421. Epub 2021 Nov 22.

Abstract

BACKGROUND

Wide-field calcium imaging (WFCI) allows for monitoring of cortex-wide neural dynamics in mice. When applied to the study of sleep, WFCI data are manually scored into the sleep states of wakefulness, non-REM (NREM) and REM by use of adjunct EEG and EMG recordings. However, this process is time-consuming and often suffers from low inter- and intra-rater reliability and invasiveness. Therefore, an automated sleep state classification method that operates on WFCI data alone is needed.

NEW METHOD

A hybrid, two-step method is proposed. In the first step, spatial-temporal WFCI data is mapped to multiplex visibility graphs (MVGs). Subsequently, a two-dimensional convolutional neural network (2D CNN) is employed on the MVGs to be classified as wakefulness, NREM and REM.

RESULTS

Sleep states were classified with an accuracy of 84% and Cohen's κ of 0.67. The method was also effectively applied on a binary classification of wakefulness/sleep (accuracy=0.82, κ = 0.62) and a four-class wakefulness/sleep/anesthesia/movement classification (accuracy=0.74, κ = 0.66). Gradient-weighted class activation maps revealed that the CNN focused on short- and long-term temporal connections of MVGs in a sleep state-specific manner. Sleep state classification performance when using individual brain regions was highest for the posterior area of the cortex and when cortex-wide activity was considered.

COMPARISON WITH EXISTING METHOD

On a 3-hour WFCI recording, the MVG-CNN achieved a κ of 0.65, comparable to a κ of 0.60 corresponding to the human EEG/EMG-based scoring.

CONCLUSIONS

The hybrid MVG-CNN method accurately classifies sleep states from WFCI data and will enable future sleep-focused studies with WFCI.

摘要

背景

宽场钙成像 (WFCI) 可用于监测小鼠皮层的神经动力学。在睡眠研究中,WFCI 数据通过附加的 EEG 和 EMG 记录被手动评分成觉醒、非快速眼动 (NREM) 和快速眼动 (REM) 睡眠状态。然而,这个过程耗时,并且常常受到低的组内和组间可靠性以及侵入性的影响。因此,需要一种单独基于 WFCI 数据的自动睡眠状态分类方法。

新方法

提出了一种混合的两步法。在第一步中,时空 WFCI 数据被映射到多重可见度图 (MVGs)。随后,二维卷积神经网络 (2D CNN) 被应用于 MVGs 以进行分类为觉醒、NREM 和 REM。

结果

睡眠状态的分类准确率为 84%,Cohen's κ 为 0.67。该方法还有效地应用于觉醒/睡眠的二分类(准确率=0.82,κ=0.62)和觉醒/睡眠/麻醉/运动的四分类(准确率=0.74,κ=0.66)。梯度加权类激活图显示,CNN 以睡眠状态特异性的方式关注 MVGs 的短期和长期时间连接。当使用单个脑区时,皮层后部和皮层广泛活动的睡眠状态分类性能最高。

与现有方法的比较

在 3 小时的 WFCI 记录中,MVG-CNN 达到了 κ=0.65,与基于人类 EEG/EMG 的评分的 κ=0.60 相当。

结论

混合的 MVG-CNN 方法可以从 WFCI 数据中准确地分类睡眠状态,并将为未来的 WFCI 睡眠研究提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/072e/9006179/0e38cb14e63a/nihms-1792383-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验