Suppr超能文献

一种新的治疗计划方法,考虑了瞬发伽马射线范围验证和分次间解剖变化。

A new treatment planning approach accounting for prompt gamma range verification and interfractional anatomical changes.

机构信息

Ludwig-Maximilians-Universität München, Department of Medical Physics, Munich, Germany.

出版信息

Phys Med Biol. 2020 Apr 29;65(9):095005. doi: 10.1088/1361-6560/ab7d15.

Abstract

Prompt gamma (PG) imaging is widely investigated for spot-by-spot in vivo range verification for proton therapy. Previous studies pointed out that the accuracy of prompt gamma imaging is affected by the statistics (number of protons delivered per pencil beam) of the proton beams and the conformity between prompt gamma and dose distribution (PG-dose correlation). Recently a novel approach to re-optimize conventional treatment plans by boosting a few pencil beams with good PG-dose correlation above the statistics limit for reliable PG detectability was proposed. However, up to now, only PG-dose correlation on the planning computed tomography (CT) was considered, not accounting for the fact that the robustness of the PG-dose correlation is not guaranteed in the cases of interfractional anatomical changes. In this work, this approach is further explored with respect to the robustness of the PG-dose correlation of each pencil beam in the case of interfractional anatomical changes. A research computational platform, combining Monte Carlo pre-calculated pencil beams with the analytical Matlab-based treatment planning system (TPS) CERR, is used for treatment planning. Geant4 is used for realistic simulation of the dose delivery and PG generation for all individual pencil beams in the heterogeneous patient anatomy using multiple CT images for representative patient cases (in this work, CTs of one prostate and one head and neck cancer patient are used). First, a Monte Carlo treatment plan is created using CERR. Thereby the PG emission and dose distribution for each individual spot is obtained. Second, PG-dose correlation is quantified using the originally proposed approach as well as a new indicator, which accounts for the sensitivity of individual spots to heterogeneities in the 3D dose distribution. This is accomplished by using a 2D distal surface (dose surface) derived from the 3D dose distribution for each spot. A few pencil beams are selected for each treatment field, based on their PG-dose correlation and dose surface, and then boosted in the new re-optimized treatment plan. All treatment plans are then fully re-calculated with Monte Carlo on the CT scans of the corresponding patient at three different time points. The result shows that all treatment plans are comparable in terms of dose distribution and dose averaged LET distributions. The spots recommended by our indicators maintain good PG-dose correlation in the cases of interfractional anatomical changes, thus ensuring that the proton range shift due to anatomical changes can be monitored. Compared to another proposed spots aggregation approach, our approach shows advantages in terms of the detectability and reliability of PG, especially in presence of heterogeneities.

摘要

提示伽马(PG)成像广泛用于质子治疗的逐个点体内范围验证。以前的研究指出,提示伽马成像的准确性受质子束的统计数据(每个笔束输送的质子数量)和提示伽马与剂量分布之间的一致性(PG-剂量相关性)的影响。最近,提出了一种通过将与剂量分布具有良好 PG-剂量相关性的几个笔束提升到可靠的 PG 可探测性的统计极限以上来重新优化常规治疗计划的新方法。然而,到目前为止,仅考虑了计划计算机断层扫描(CT)上的 PG-剂量相关性,而没有考虑到在分次解剖变化的情况下 PG-剂量相关性的稳健性不能保证的事实。在这项工作中,进一步研究了在分次解剖变化的情况下每个笔束的 PG-剂量相关性的稳健性。一个研究计算平台,结合蒙特卡罗预计算的笔束和基于分析的 Matlab 治疗计划系统(TPS)CERR,用于治疗计划。Geant4 用于使用多个 CT 图像对代表性患者病例(在这项工作中,使用了一个前列腺和一个头颈部癌症患者的 CT)中的异质患者解剖结构中的所有单个笔束进行剂量输送和 PG 生成的现实模拟。首先,使用 CERR 创建蒙特卡罗治疗计划。从而获得每个单个点的 PG 发射和剂量分布。其次,使用最初提出的方法以及新指标量化 PG-剂量相关性,该指标考虑了单个点对 3D 剂量分布中的异质性的敏感性。这是通过为每个点使用从 3D 剂量分布导出的二维远侧表面(剂量表面)来完成的。根据 PG-剂量相关性和剂量表面,为每个治疗场选择几个笔束,然后在新的重新优化的治疗计划中提升这些笔束。然后,使用蒙特卡罗在三个不同时间点对相应患者的 CT 扫描上重新计算所有治疗计划。结果表明,所有治疗计划在剂量分布和剂量平均 LET 分布方面都是可比的。我们的指标推荐的点在分次解剖变化的情况下保持良好的 PG-剂量相关性,从而确保可以监测由于解剖变化引起的质子射程偏移。与另一种提出的点聚合方法相比,我们的方法在 PG 的可探测性和可靠性方面具有优势,尤其是在存在异质性的情况下。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验