Suppr超能文献

一种用于质量变化和存在干扰情况下倒立摆的自适应滑模观测器及实验验证

An adaptive sliding mode observer for inverted pendulum under mass variation and disturbances with experimental validation.

作者信息

Jmel Ines, Dimassi Habib, Hadj-Said Salim, M'Sahli Faouzi

机构信息

University of Monastir, Ecole Nationale d'Ingénieurs de Monastir, LAS2E, 5019, Monastir, Tunisia.

University of Monastir, Ecole Nationale d'Ingénieurs de Monastir, LAS2E, 5019, Monastir, Tunisia; University of Sousse, Institut Supérieur des Sciences Appliquées et de Technologie de Sousse, Tunisia.

出版信息

ISA Trans. 2020 Jul;102:264-279. doi: 10.1016/j.isatra.2020.02.029. Epub 2020 Feb 28.

Abstract

In this paper, a new robust adaptive estimation approach is designed for the inverted pendulum. The estimation scheme is composed by an auxiliary high gain observer in cascade with an adaptive sliding mode observer. The auxiliary high gain observer is designed to estimate auxiliary outputs in order to solve the dissatisfaction of observer matching condition related to the presence of disturbances. Then, using the estimated auxiliary outputs, the adaptive sliding mode observer is synthesized to estimate conjointly the states, the unknown parameter (the pendulum mass which appears nonlinearly in the dynamics of the pendulum model) and the unknown disturbances. The stability analysis is established using the Lyapunov approach. Numerical simulations are carried out to validate theoretical results. Furthermore, experimental tests are realized using a real pendulum setup (a product of Feedback Instruments) to highlight the good performances of the proposed estimation method in practice.

摘要

本文针对倒立摆设计了一种新的鲁棒自适应估计方法。该估计方案由一个辅助高增益观测器与一个自适应滑模观测器级联组成。辅助高增益观测器用于估计辅助输出,以解决与干扰存在相关的观测器匹配条件不满足的问题。然后,利用估计出的辅助输出,合成自适应滑模观测器,以联合估计状态、未知参数(在摆模型动力学中非线性出现的摆质量)和未知干扰。使用李雅普诺夫方法进行稳定性分析。进行了数值模拟以验证理论结果。此外,使用实际的摆装置(反馈仪器公司的产品)进行了实验测试,以突出所提出的估计方法在实际中的良好性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验