Alvaro-Mendoza Enrique, De León-Morales Jesús, Salas-Peña Oscar
Facultad de Ingeniería Mecanica y Electrica, Universidad Autónoma de Nuevo León, San Nicolas de Los Garza, 66451, Mexico.
Facultad de Ingeniería Mecanica y Electrica, Universidad Autónoma de Nuevo León, San Nicolas de Los Garza, 66451, Mexico.
ISA Trans. 2021 Jun;112:99-107. doi: 10.1016/j.isatra.2020.12.018. Epub 2020 Dec 10.
In this paper, simultaneous state estimation and parameters identification for a class of nonlinear systems are addressed. With the aim of solving this problem, an adaptive observer based on the sliding mode (AOSM) approach is designed. The main advantage of the proposed adaptive observer design is that it combines the robustness and finite time convergence of the sliding mode observers, with the simplicity of tuning of high-gain observers, reducing tuning effort. The finite time convergence of the proposed adaptive observer is established using a Lyapunov approach. Furthermore, a comparative study of the proposed adaptive observer against schemes from literature is presented, in order to show the advantages of the proposed approach. Finally, numerical results are provided to demonstrate the effectiveness and performance of the proposed approach under noise and external disturbances.
本文研究了一类非线性系统的状态估计与参数辨识问题。为解决该问题,设计了一种基于滑模(AOSM)方法的自适应观测器。所提出的自适应观测器设计的主要优点在于,它将滑模观测器的鲁棒性和有限时间收敛性与高增益观测器的调谐简便性相结合,减少了调谐工作量。利用李雅普诺夫方法证明了所提出的自适应观测器的有限时间收敛性。此外,对所提出的自适应观测器与文献中的方案进行了比较研究,以展示所提方法的优势。最后,给出了数值结果,以证明所提方法在噪声和外部干扰下的有效性和性能。