Schöttner L, Erker S, Schlesinger R, Koch N, Nefedov A, Hofmann O T, Wöll C
Karlsruhe Institute of Technology, Institute of Functional Interfaces, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Graz University of Technology, NAWI Graz, Petersgasse 16, 8010 Graz, Austria.
J Phys Chem C Nanomater Interfaces. 2020 Feb 27;124(8):4511-4516. doi: 10.1021/acs.jpcc.9b08768. Epub 2020 Jan 29.
Charge transfer at organic/inorganic interfaces critically influences the properties of molecular adlayers. Although for metals such charge transfers are well documented by experimental and theoretical results, in the case of semiconductors, clear and direct evidence for a transfer of electrons or holes from oxides with their typically high ionization energy is missing. Here, we present data from infrared reflection-absorption spectroscopy demonstrating that despite a high ionization energy, electrons are transferred from ZnO into a prototype strong molecular electron acceptor, hexafluoro-tetracyano-naphthoquinodimethane (F-TCNNQ). Because there are no previous studies of this type, the interpretation of the pronounced vibrational red shifts observed in the experiment was aided by a thorough theoretical analysis using density functional theory. The calculations reveal that two mechanisms govern the pronounced vibrational band shifts of the adsorbed molecules: electron transfer into unoccupied molecular levels of the organic acceptor and also the bonding between the surface Zn atoms and the peripheral cyano groups. These combined experimental data and the theoretical analysis provide the so-far missing evidence of interfacial electron transfer from high ionization energy inorganic semiconductors to molecular acceptors and indicates that n-doping of ZnO plays a crucial role.
有机/无机界面处的电荷转移对分子吸附层的性质有着至关重要的影响。尽管对于金属而言,此类电荷转移已被实验和理论结果充分证明,但对于半导体,目前仍缺乏清晰直接的证据来表明电子或空穴会从具有典型高电离能的氧化物中转移出来。在此,我们展示了来自红外反射吸收光谱的数据,结果表明,尽管氧化锌具有高电离能,但电子仍会从氧化锌转移到一种典型的强分子电子受体——六氟四氰萘醌二甲烷(F-TCNNQ)中。由于此前尚无此类研究,我们通过使用密度泛函理论进行深入的理论分析,辅助解释了在实验中观察到的明显振动红移现象。计算结果表明,有两种机制决定了吸附分子明显的振动带位移:电子转移到有机受体的未占据分子能级,以及表面锌原子与周边氰基之间的键合作用。这些综合的实验数据和理论分析提供了迄今为止缺失的关于从高电离能无机半导体到分子受体的界面电子转移的证据,并表明氧化锌的n型掺杂起着关键作用。