Department of Electrical and Electronic Engineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom.
Anal Chem. 2020 Apr 7;92(7):5276-5285. doi: 10.1021/acs.analchem.9b05836. Epub 2020 Mar 20.
This work describes an array of 1024 ion-sensitive field-effect transistors (ISFETs) using sensor-learning techniques to perform multi-ion imaging for concurrent detection of potassium, sodium, calcium, and hydrogen. Analyte-specific ionophore membranes are deposited on the surface of the ISFET array chip, yielding pixels with quasi-Nernstian sensitivity to K, Na, or Ca. Uncoated pixels display pH sensitivity from the standard SiN passivation layer. The platform is then trained by inducing a change in single-ion concentration and measuring the responses of all pixels. Sensor learning relies on offline training algorithms including -means clustering and density-based spatial clustering of applications with noise to yield membrane mapping and sensitivity of each pixel to target electrolytes. We demonstrate multi-ion imaging with an average error of 3.7% (K), 4.6% (Na), and 1.8% (pH) for each ion, respectively, while Ca incurs a larger error of 24.2% and hence is included to demonstrate versatility. We validate the platform with a brain dialysate fluid sample and demonstrate reading by comparing with a gold-standard spectrometry technique.
本工作描述了一种由 1024 个离子敏感场效应晶体管(ISFET)组成的阵列,该阵列使用传感器学习技术对钾、钠、钙和氢进行多离子成像,以进行同时检测。在 ISFET 阵列芯片表面沉积分析物特异性离子载体膜,得到对 K、Na 或 Ca 具有准 Nernst 灵敏度的像素。未涂层的像素显示出来自标准 SiN 钝化层的 pH 灵敏度。然后,通过诱导单离子浓度变化并测量所有像素的响应来对平台进行训练。传感器学习依赖于离线训练算法,包括均值聚类和具有噪声的应用程序的基于密度的空间聚类,以产生每个像素对目标电解质的膜映射和灵敏度。我们分别展示了每个离子的多离子成像,平均误差为 3.7%(K)、4.6%(Na)和 1.8%(pH),而 Ca 则产生更大的 24.2%误差,因此包括在内以展示多功能性。我们使用脑透析液样本验证了该平台,并通过与金标准光谱技术进行比较来证明其读数的准确性。