Department of Electrical & Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA.
School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA.
Biosens Bioelectron. 2018 Aug 30;114:78-88. doi: 10.1016/j.bios.2018.04.009. Epub 2018 Apr 10.
The ability to view biological events in real time has contributed significantly to research in the life sciences. While video capture of real time changes in anatomical relationships is important, it is equally important to visualize real time changes in the chemical communications that drive cell behaviors. This paper describes an electrochemical imaging system capable of capturing changes in chemical gradients in live tissue slices. The system consists of a CMOS microchip with 8192 configurable Pt surface electrodes, on-chip potentiostat, on-chip control logic, and a microfluidic device designed to interface with the CMOS chip to support ex vivo tissue experimentation. All data processing and visualization methods, sensor calibrations, microfluidics fabrication, and tissue preparation and handling procedures are described. Using norepinephrine as a target analyte for proof of concept, the system is capable of differentiating concentrations of norepinephrine as low as 8 µM and up to 1024 µM with a linear response and a spatial resolution of 25.5 µm × 30.4 µm. Electrochemical imaging was tested using murine adrenal tissue as a biological model and successfully showed caffeine-stimulated release of catecholamines from live slices of adrenal tissue with temporal sensitivity. This system successfully demonstrates the use of a high-density microelectrode array for electrochemical analysis with high spatiotemporal resolution to gather chemical gradient information in parallel with optical microscopy recordings.
实时观察生物事件的能力为生命科学研究做出了重大贡献。虽然实时捕获解剖关系变化的视频很重要,但同样重要的是要可视化驱动细胞行为的化学通讯的实时变化。本文介绍了一种能够捕获活组织切片中化学梯度变化的电化学成像系统。该系统由一个带有 8192 个可配置 Pt 表面电极的 CMOS 微芯片、片上恒电位仪、片上控制逻辑以及一个微流控器件组成,旨在与 CMOS 芯片接口以支持离体组织实验。描述了所有的数据处理和可视化方法、传感器校准、微流控器件制造以及组织准备和处理程序。使用去甲肾上腺素作为概念验证的靶标分析物,该系统能够区分低至 8 µM 至高达 1024 µM 的去甲肾上腺素浓度,具有线性响应和 25.5 µm×30.4 µm 的空间分辨率。使用小鼠肾上腺组织作为生物模型对电化学成像进行了测试,并成功地显示了咖啡因刺激从肾上腺组织切片中释放儿茶酚胺,具有时间灵敏度。该系统成功地展示了使用高密度微电极阵列进行电化学分析,具有高时空分辨率,可与光学显微镜记录并行收集化学梯度信息。