Suppr超能文献

迈向哺乳动物细胞周期计算建模的抽象化:包含多级混合Petri网的模型简化流程。

Towards abstraction of computational modelling of mammalian cell cycle: Model reduction pipeline incorporating multi-level hybrid petri nets.

作者信息

Abroudi Ali, Samarasinghe Sandhya, Kulasiri Don

机构信息

Complex Systems, Big Data and Informatics Initiative (CSBII), Lincoln University, New Zealand.

Complex Systems, Big Data and Informatics Initiative (CSBII), Lincoln University, New Zealand.

出版信息

J Theor Biol. 2020 Jul 7;496:110212. doi: 10.1016/j.jtbi.2020.110212. Epub 2020 Mar 4.

Abstract

Cell cycle is a large biochemical network and it is crucial to simplify it to gain a clearer understanding and insights into the cell cycle. This is also true for other biochemical networks. In this study, we present a model abstraction scheme/pipeline to create a minimal abstract model of the whole mammalian cell cycle system from a large Ordinary Differential Equation model of cell cycle we published previously (Abroudi et al., 2017). The abstract model is developed in a way that it captures the main characteristics (dynamics of key controllers), responses (G1-S and G2-M transitions and DNA damage) and the signalling subsystems (Growth Factor, G1-S and G2-M checkpoints, and DNA damage) of the original model (benchmark). Further, our model exploits: (i) separation of time scales (slow and fast reactions), (ii) separation of levels of complexity (high-level and low-level interactions), (iii) cell-cycle stages (temporality), (iv) functional subsystems (as mentioned above), and (v) represents the whole cell cycle - within a Multi-Level Hybrid Petri Net (MLHPN) framework. Although hybrid Petri Nets is not new, the abstraction of interactions and timing we introduced here is new to cell cycle and Petri Nets. Importantly, our models builds on the significant elements, representing the core cell cycle system, found through a novel Global Sensitivity Analysis on the benchmark model, using Self Organising Maps and Correlation Analysis that we introduced in (Abroudi et al., 2017). Taken the two aspects together, our study proposes a 2-stage model reduction pipeline for large systems and the main focus of this paper is on stage 2, Petri Net model, put in the context of the pipeline. With the MLHPN model, the benchmark model with 61 continuous variables (ODEs) and 148 parameters were reduced to 14 variables (4 continuous (Cyc_Cdks - the main controllers of cell cycle) and 10 discrete (regulators of Cyc_Cdks)) and 31 parameters. Additional 9 discrete elements represented the temporal progression of cell cycle. Systems dynamics simulation results of the MLHPN model were in close agreement with the benchmark model with respect to the crucial metrics selected for comparison: order and pattern of Cyc_Cdk activation, timing of G1-S and G2-M transitions with or without DNA damage, efficiency of the two cell cycle checkpoints in arresting damaged cells and passing healthy cells, and response to two types of global parameter perturbations. The results show that the MLHPN provides a close approximation to the comprehensive benchmark model in robustly representing systems dynamics and emergent properties while presenting the core cell cycle controller in an intuitive, transparent and subsystems format.

摘要

细胞周期是一个庞大的生化网络,对其进行简化对于更清晰地理解细胞周期并获得深入见解至关重要。其他生化网络亦是如此。在本研究中,我们提出了一种模型抽象方案/流程,以便从我们之前发表的细胞周期大型常微分方程模型(Abroudi等人,2017年)创建整个哺乳动物细胞周期系统的最小抽象模型。抽象模型的构建方式使其能够捕捉原始模型(基准模型)的主要特征(关键调控因子的动态变化)、响应(G1-S和G2-M转换以及DNA损伤)以及信号子系统(生长因子、G1-S和G2-M检查点以及DNA损伤)。此外,我们的模型利用了:(i)时间尺度分离(慢反应和快反应),(ii)复杂程度分离(高层次和低层次相互作用),(iii)细胞周期阶段(时间性),(iv)功能子系统(如上所述),以及(v)在多级混合Petri网(MLHPN)框架内表示整个细胞周期。虽然混合Petri网并不新鲜,但我们在此引入的相互作用和时间抽象对于细胞周期和Petri网来说是新的。重要的是,我们的模型基于通过对基准模型进行新颖的全局敏感性分析发现的重要元素构建,该分析使用了我们在(Abroudi等人,2017年)中引入的自组织映射和相关性分析。综合这两个方面,我们的研究提出了一种针对大型系统的两阶段模型简化流程,本文的主要重点是流程中的第二阶段,即Petri网模型。借助MLHPN模型,具有61个连续变量(常微分方程)和148个参数的基准模型被简化为14个变量(4个连续变量(细胞周期蛋白依赖性激酶 - 细胞周期的主要调控因子)和10个离散变量(细胞周期蛋白依赖性激酶的调节因子))和31个参数。另外9个离散元素表示细胞周期的时间进程。MLHPN模型的系统动力学模拟结果与基准模型在用于比较的关键指标方面密切一致:细胞周期蛋白依赖性激酶激活的顺序和模式、有或无DNA损伤时G1-S和G2-M转换的时间、两个细胞周期检查点在阻滞受损细胞和放行健康细胞方面的效率,以及对两种全局参数扰动的响应。结果表明,MLHPN在稳健表示系统动力学和涌现特性的同时,以直观、透明和子系统的形式呈现核心细胞周期调控因子,为综合基准模型提供了一个紧密的近似。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验