Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus Plaine, CP 231, B-1050 Brussels, Belgium.
Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus Plaine, CP 231, B-1050 Brussels, Belgium.
J Theor Biol. 2019 Jan 14;461:276-290. doi: 10.1016/j.jtbi.2018.10.042. Epub 2018 Oct 21.
A network of cyclin-dependent kinases (Cdks) regulated by multiple negative and positive feedback loops controls progression in the mammalian cell cycle. We previously proposed a detailed computational model for this network, which consists of four coupled Cdk modules. Both this detailed model and a reduced, skeleton version show that the Cdk network is capable of temporal self-organization in the form of sustained Cdk oscillations, which correspond to the orderly progression along the different cell cycle phases G1, S (DNA replication), G2 and M (mitosis). We use the skeleton model to revisit the role of positive feedback (PF) loops on the dynamics of the mammalian cell cycle by showing that the multiplicity of PF loops extends the range of bistability in the isolated Cdk modules controlling the G1/S and G2/M transitions. Resorting to stochastic simulations we show that, through their effect on the range of bistability, multiple PF loops enhance the robustness of Cdk oscillations with respect to molecular noise. The model predicts that a rise in the total level of Cdk1 also enlarges the domain of bistability in the isolated Cdk modules as well as the range of oscillations in the full Cdk network. Surprisingly, stochastic simulations indicate that Cdk1 overexpression reduces the robustness of Cdk oscillations towards molecular noise; this result is due to the increased distance between the two branches of the bistable switch at higher levels of Cdk1. At intermediate levels of growth factor stochastic simulations show that cells may randomly switch between cell cycle arrest and cell proliferation, as a consequence of fluctuations. In the presence of Cdk1 overexpression, these transitions occur even at low levels of growth factor. Extending stochastic simulations from single cells to cell populations suggests that stochastic switches between cell cycle arrest and proliferation may provide a source of heterogeneity in a cell population, as observed in cancer cells characterized by Cdk1 overexpression.
一个由多个正负反馈回路调控的细胞周期蛋白依赖性激酶(Cdks)网络控制着哺乳动物细胞周期的进程。我们之前提出了这个网络的一个详细计算模型,该模型由四个耦合的 Cdk 模块组成。这个详细模型和一个简化的骨架模型都表明,Cdk 网络能够以持续的 Cdk 振荡的形式进行时间上的自我组织,这种振荡对应于沿着不同细胞周期阶段 G1、S(DNA 复制)、G2 和 M(有丝分裂)的有序进展。我们使用骨架模型来重新研究正反馈(PF)回路在哺乳动物细胞周期动力学中的作用,结果表明,PF 回路的多样性扩展了控制 G1/S 和 G2/M 转换的孤立 Cdk 模块中的双稳性范围。通过随机模拟,我们表明,通过它们对双稳性范围的影响,多个 PF 回路增强了 Cdk 振荡对分子噪声的鲁棒性。该模型预测,Cdk1 总水平的升高也会扩大孤立 Cdk 模块中双稳性的范围以及整个 Cdk 网络中振荡的范围。令人惊讶的是,随机模拟表明,Cdk1 过表达会降低 Cdk 振荡对分子噪声的鲁棒性;这一结果是由于在更高的 Cdk1 水平下,双稳开关的两个分支之间的距离增加。在生长因子的随机模拟中,在中间水平下,细胞可能会随机地在细胞周期停滞和细胞增殖之间切换,这是由于波动的结果。在 Cdk1 过表达的情况下,即使在低水平的生长因子存在下,这些转变也会发生。将随机模拟从单个细胞扩展到细胞群体表明,细胞周期停滞和增殖之间的随机转换可能为细胞群体中的异质性提供一个来源,正如在 Cdk1 过表达的癌细胞中观察到的那样。