Mayr Magdalena J, Zimmermann Matthias, Dey Jason, Brand Andreas, Wehrli Bernhard, Bürgmann Helmut
Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland.
Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, 8092, Zurich, Switzerland.
Commun Biol. 2020 Mar 6;3(1):108. doi: 10.1038/s42003-020-0838-z.
Lakes and reservoirs contribute substantially to atmospheric concentrations of the potent greenhouse gas methane. Lake sediments produce large amounts of methane, which accumulate in the oxygen-depleted bottom waters of stratified lakes. Climate change and eutrophication may increase the number of lakes with methane storage in the future. Whether stored methane escapes to the atmosphere during annual lake overturn is a matter of controversy and depends critically on the response of the methanotroph assemblage. Here we show, by combining 16S rRNA gene and pmoA mRNA amplicon sequencing, qPCR, CARD-FISH and potential methane-oxidation rate measurements, that the methanotroph assemblage in a mixing lake underwent both a substantial bloom and ecological succession. As a result, methane oxidation kept pace with the methane supplied from methane-rich bottom water and most methane was oxidized. This aspect of freshwater methanotroph ecology represents an effective mechanism limiting methane transfer from lakes to the atmosphere.
湖泊和水库对强效温室气体甲烷的大气浓度有很大贡献。湖泊沉积物会产生大量甲烷,这些甲烷积聚在分层湖泊缺氧的底层水中。气候变化和富营养化可能会增加未来储存甲烷的湖泊数量。在每年的湖泊翻转期间,储存的甲烷是否会逸散到大气中是一个有争议的问题,并且关键取决于甲烷氧化菌群落的反应。在这里,我们通过结合16S rRNA基因和pmoA mRNA扩增子测序、定量PCR、催化报告沉积荧光原位杂交(CARD-FISH)以及潜在甲烷氧化速率测量,表明一个混合湖泊中的甲烷氧化菌群落经历了大量繁殖和生态演替。结果,甲烷氧化与富含甲烷的底层水供应的甲烷保持同步,并且大部分甲烷被氧化。淡水甲烷氧化菌生态学的这一方面代表了一种限制甲烷从湖泊向大气转移的有效机制。