Suppr超能文献

SVD-clustering,一种通用的图像分析方法,在模型和拉曼微光谱图上进行了解释和演示。

SVD-clustering, a general image-analyzing method explained and demonstrated on model and Raman micro-spectroscopic maps.

机构信息

Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.

BOKU-VIBT Imaging Centre, University of Natural Resources and Life Sciences, Vienna, Austria.

出版信息

Sci Rep. 2020 Mar 6;10(1):4238. doi: 10.1038/s41598-020-61206-9.

Abstract

An image analyzing method (SVD-clustering) is presented. Amplitude vectors of SVD factorization (V…V) were introduced into the imaging of the distribution of the corresponding U basis-spectra. Since each V vector contains each point of the map, plotting them along the X, Y, Z dimensions of the map reconstructs the spatial distribution of the corresponding U basis-spectrum. This gives valuable information about the first, second, etc. higher-order deviations present in the map. We extended SVD with a clustering method, using the significant V vectors from the V matrix as coordinates of image points in a n-dimensional space (n is the effective rank of the data matrix). This way every image point had a corresponding coordinate in the n-dimensional space and formed a point set. Clustering was applied to this point set. SVD-clustering is universal; it is applicable to any measurement where data are recorded as a function of an external parameter (time, space, temperature, concentration, species, etc.). Consequently, our method is not restricted to spectral imaging, it can find application in many different 2D and 3D image analyses. Using SVD-clustering, we have shown on models the theoretical possibilities and limitations of the method, especially in the context of creating, meaning/interpreting of cluster spectra. Then for real-world samples, two examples are presented, where we were able to reveal minute alterations in the samples (changing cation ratios in minerals, differently structured cellulose domains in plant root) with spatial resolution.

摘要

提出了一种图像分析方法(奇异值分解聚类)。将奇异值分解(SVD)因子分解的振幅向量(V...V)引入到相应 U 基谱分布的成像中。由于每个 V 向量包含图谱中的每个点,因此沿着图谱的 X、Y、Z 维度绘制它们可以重建相应 U 基谱的空间分布。这提供了有关图谱中存在的一阶、二阶等更高阶偏差的有价值的信息。我们使用聚类方法扩展了 SVD,将 V 矩阵中的显著 V 向量用作 n 维空间(n 是数据矩阵的有效秩)中图像点的坐标。这样,每个图像点在 n 维空间中都有相应的坐标,并形成一个点集。对该点集应用聚类。SVD 聚类是通用的;它适用于任何将数据记录为外部参数(时间、空间、温度、浓度、物质等)函数的测量。因此,我们的方法不仅限于光谱成像,它可以在许多不同的 2D 和 3D 图像分析中找到应用。使用 SVD 聚类,我们在模型上展示了该方法的理论可能性和局限性,特别是在创建、解释聚类谱方面。然后,针对实际样本,展示了两个示例,我们能够以空间分辨率揭示样本中的微小变化(矿物中阳离子比的变化、植物根系中不同结构的纤维素域)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8247/7060257/85743bd3a7fa/41598_2020_61206_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验