Suppr超能文献

二维和三维基质辅助激光解吸电离成像:可视化与数据挖掘的概念策略

2D and 3D MALDI-imaging: conceptual strategies for visualization and data mining.

作者信息

Thiele Herbert, Heldmann Stefan, Trede Dennis, Strehlow Jan, Wirtz Stefan, Dreher Wolfgang, Berger Judith, Oetjen Janina, Kobarg Jan Hendrik, Fischer Bernd, Maass Peter

机构信息

Steinbeis Innovation Center SCiLS (Scientific Computing in Life Sciences), D-28211 Bremen, Germany; Fraunhofer MEVIS, Institute for Medical Image Computing, D-23562 Lübeck, Germany.

出版信息

Biochim Biophys Acta. 2014 Jan;1844(1 Pt A):117-37. doi: 10.1016/j.bbapap.2013.01.040. Epub 2013 Mar 4.

Abstract

3D imaging has a significant impact on many challenges in life sciences, because biology is a 3-dimensional phenomenon. Current 3D imaging-technologies (various types MRI, PET, SPECT) are labeled, i.e. they trace the localization of a specific compound in the body. In contrast, 3D MALDI mass spectrometry-imaging (MALDI-MSI) is a label-free method imaging the spatial distribution of molecular compounds. It complements 3D imaging labeled methods, immunohistochemistry, and genetics-based methods. However, 3D MALDI-MSI cannot tap its full potential due to the lack of statistical methods for analysis and interpretation of large and complex 3D datasets. To overcome this, we established a complete and robust 3D MALDI-MSI pipeline combined with efficient computational data analysis methods for 3D edge preserving image denoising, 3D spatial segmentation as well as finding colocalized m/z values, which will be reviewed here in detail. Furthermore, we explain, why the integration and correlation of the MALDI imaging data with other imaging modalities allows to enhance the interpretation of the molecular data and provides visualization of molecular patterns that may otherwise not be apparent. Therefore, a 3D data acquisition workflow is described generating a set of 3 different dimensional images representing the same anatomies. First, an in-vitro MRI measurement is performed which results in a three-dimensional image modality representing the 3D structure of the measured object. After sectioning the 3D object into N consecutive slices, all N slices are scanned using an optical digital scanner, enabling for performing the MS measurements. Scanning the individual sections results into low-resolution images, which define the base coordinate system for the whole pipeline. The scanned images conclude the information from the spatial (MRI) and the mass spectrometric (MALDI-MSI) dimension and are used for the spatial three-dimensional reconstruction of the object performed by image registration techniques. Different strategies for automatic serial image registration applied to MS datasets are outlined in detail. The third image modality is histology driven, i.e. a digital scan of the histological stained slices in high-resolution. After fusion of reconstructed scan images and MRI the slice-related coordinates of the mass spectra can be propagated into 3D-space. After image registration of scan images and histological stained images, the anatomical information from histology is fused with the mass spectra from MALDI-MSI. As a result of the described pipeline we have a set of 3 dimensional images representing the same anatomies, i.e. the reconstructed slice scans, the spectral images as well as corresponding clustering results, and the acquired MRI. Great emphasis is put on the fact that the co-registered MRI providing anatomical details improves the interpretation of 3D MALDI images. The ability to relate mass spectrometry derived molecular information with in vivo and in vitro imaging has potentially important implications. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan.

摘要

三维成像对生命科学中的诸多挑战有着重大影响,因为生物学是一种三维现象。当前的三维成像技术(各种类型的磁共振成像、正电子发射断层扫描、单光子发射计算机断层扫描)都需要标记,即它们追踪体内特定化合物的定位。相比之下,三维基质辅助激光解吸电离质谱成像(基质辅助激光解吸电离质谱成像)是一种对分子化合物空间分布进行无标记成像的方法。它补充了三维成像标记方法、免疫组织化学方法和基于遗传学的方法。然而,由于缺乏用于分析和解释大型复杂三维数据集的统计方法,三维基质辅助激光解吸电离质谱成像无法充分发挥其潜力。为克服这一问题,我们建立了一个完整且强大的三维基质辅助激光解吸电离质谱成像流程,并结合了高效的计算数据分析方法,用于三维边缘保留图像去噪、三维空间分割以及寻找共定位的质荷比数值,本文将对此进行详细综述。此外,我们还解释了为什么将基质辅助激光解吸电离成像数据与其他成像模态进行整合和关联能够增强对分子数据的解释,并提供否则可能不明显的分子模式可视化。因此,本文描述了一种三维数据采集工作流程,可生成一组代表相同解剖结构的三种不同维度的图像。首先,进行体外磁共振成像测量,得到一个代表被测物体三维结构的三维图像模态。将三维物体切成N个连续切片后,使用光学数字扫描仪对所有N个切片进行扫描,以便进行质谱测量。对各个切片进行扫描会得到低分辨率图像,这些图像为整个流程定义了基础坐标系。扫描图像包含了来自空间(磁共振成像)和质谱(基质辅助激光解吸电离质谱成像)维度的信息,并用于通过图像配准技术对物体进行空间三维重建。详细概述了应用于质谱数据集的自动序列图像配准的不同策略。第三种图像模态由组织学驱动,即对组织学染色切片进行高分辨率数字扫描。在重建的扫描图像和磁共振成像融合后,质谱的切片相关坐标可以传播到三维空间。在扫描图像和组织学染色图像进行图像配准后,来自组织学的解剖信息与来自基质辅助激光解吸电离质谱成像的质谱进行融合。通过上述流程,我们得到了一组代表相同解剖结构的三维图像,即重建的切片扫描图像、光谱图像以及相应的聚类结果,还有采集到的磁共振成像。我们特别强调,提供解剖细节的配准磁共振成像有助于改进对三维基质辅助激光解吸电离图像的解释。将质谱衍生的分子信息与体内和体外成像相关联的能力具有潜在的重要意义。本文是名为:鉴定后时代的计算蛋白质组学的特刊的一部分。客座编辑:马丁·艾森纳赫和克里斯蒂安·斯特凡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验