Center for Industrial Mathematics, University of Bremen, Bibliothekstr. 1, 28359 Bremen, Germany.
Anal Chem. 2013 Jun 18;85(12):5676-83. doi: 10.1021/ac303257d. Epub 2013 Jun 5.
Over the past decade, confocal Raman microspectroscopic (CRM) imaging has matured into a useful analytical tool to obtain spatially resolved chemical information on the molecular composition of biological samples and has found its way into histopathology, cytology, and microbiology. A CRM imaging data set is a hyperspectral image in which Raman intensities are represented as a function of three coordinates: a spectral coordinate λ encoding the wavelength and two spatial coordinates x and y. Understanding CRM imaging data is challenging because of its complexity, size, and moderate signal-to-noise ratio. Spatial segmentation of CRM imaging data is a way to reveal regions of interest and is traditionally performed using nonsupervised clustering which relies on spectral domain-only information with the main drawback being the high sensitivity to noise. We present a new pipeline for spatial segmentation of CRM imaging data which combines preprocessing in the spectral and spatial domains with k-means clustering. Its core is the preprocessing routine in the spatial domain, edge-preserving denoising (EPD), which exploits the spatial relationships between Raman intensities acquired at neighboring pixels. Additionally, we propose to use both spatial correlation to identify Raman spectral features colocalized with defined spatial regions and confidence maps to assess the quality of spatial segmentation. For CRM data acquired from midsagittal Syrian hamster ( Mesocricetus auratus ) brain cryosections, we show how our pipeline benefits from the complex spatial-spectral relationships inherent in the CRM imaging data. EPD significantly improves the quality of spatial segmentation that allows us to extract the underlying structural and compositional information contained in the Raman microspectra.
在过去的十年中,共聚焦拉曼显微光谱(CRM)成像已发展成为一种有用的分析工具,可获取生物样本分子组成的空间分辨化学信息,并已应用于组织病理学、细胞学和微生物学。CRM 成像数据集是一个高光谱图像,其中拉曼强度表示为三个坐标的函数:一个编码波长的光谱坐标 λ,以及两个空间坐标 x 和 y。由于其复杂性、大小和中等的信噪比,理解 CRM 成像数据具有挑战性。CRM 成像数据的空间分割是揭示感兴趣区域的一种方法,传统上使用非监督聚类来执行,该方法依赖于仅基于光谱域的信息,主要缺点是对噪声非常敏感。我们提出了一种用于 CRM 成像数据空间分割的新流水线,该流水线将光谱域和空间域的预处理与 k-均值聚类相结合。其核心是空间域中的预处理例程,即保持边缘的去噪(EPD),它利用了在相邻像素处获取的拉曼强度之间的空间关系。此外,我们建议同时使用空间相关性来识别与定义的空间区域共定位的拉曼光谱特征,以及置信度图来评估空间分割的质量。对于从中线叙利亚仓鼠( Mesocricetus auratus )脑冷冻切片采集的 CRM 数据,我们展示了我们的流水线如何从 CRM 成像数据固有的复杂空间-光谱关系中受益。EPD 显著提高了空间分割的质量,使我们能够提取拉曼光谱中包含的潜在结构和组成信息。