Suppr超能文献

基于能量的图卷积网络在蛋白质对接模型评分中的应用。

Energy-based graph convolutional networks for scoring protein docking models.

机构信息

Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas.

TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas.

出版信息

Proteins. 2020 Aug;88(8):1091-1099. doi: 10.1002/prot.25888. Epub 2020 Mar 16.

Abstract

Structural information about protein-protein interactions, often missing at the interactome scale, is important for mechanistic understanding of cells and rational discovery of therapeutics. Protein docking provides a computational alternative for such information. However, ranking near-native docked models high among a large number of candidates, often known as the scoring problem, remains a critical challenge. Moreover, estimating model quality, also known as the quality assessment problem, is rarely addressed in protein docking. In this study, the two challenging problems in protein docking are regarded as relative and absolute scoring, respectively, and addressed in one physics-inspired deep learning framework. We represent protein and complex structures as intra- and inter-molecular residue contact graphs with atom-resolution node and edge features. And we propose a novel graph convolutional kernel that aggregates interacting nodes' features through edges so that generalized interaction energies can be learned directly from 3D data. The resulting energy-based graph convolutional networks (EGCN) with multihead attention are trained to predict intra- and inter-molecular energies, binding affinities, and quality measures (interface RMSD) for encounter complexes. Compared to a state-of-the-art scoring function for model ranking, EGCN significantly improves ranking for a critical assessment of predicted interactions (CAPRI) test set involving homology docking; and is comparable or slightly better for Score_set, a CAPRI benchmark set generated by diverse community-wide docking protocols not known to training data. For Score_set quality assessment, EGCN shows about 27% improvement to our previous efforts. Directly learning from 3D structure data in graph representation, EGCN represents the first successful development of graph convolutional networks for protein docking.

摘要

蛋白质-蛋白质相互作用的结构信息在相互作用组学尺度上经常缺失,对于理解细胞的机制和合理发现治疗方法至关重要。蛋白质对接为获取此类信息提供了一种计算替代方法。然而,在大量候选物中对接近天然的对接模型进行高排名,通常称为打分问题,仍然是一个关键挑战。此外,在蛋白质对接中很少解决模型质量估计问题,也称为质量评估问题。在这项研究中,蛋白质对接中的两个具有挑战性的问题分别被视为相对和绝对打分,并在一个受物理启发的深度学习框架中进行了处理。我们将蛋白质和复合物结构表示为具有原子分辨率节点和边特征的分子内和分子间残基接触图。我们提出了一种新的图卷积核,通过边聚合相互作用节点的特征,以便可以直接从 3D 数据中学习广义相互作用能。基于能量的带有多头注意力的图卷积网络(EGCN)用于预测分子内和分子间能量、结合亲和力和质量度量(界面 RMSD)用于遭遇复合物。与用于模型排名的最先进打分函数相比,EGCN 显著提高了同源对接的关键评估预测相互作用 (CAPRI) 测试集的排名;对于 Score_set,即由不同社区范围的对接协议生成的 CAPRI 基准集,该协议不为人知训练数据,EGCN 的表现与之相当或略好。对于 Score_set 的质量评估,EGCN 相对于我们之前的努力提高了约 27%。EGCN 通过图表示中的 3D 结构数据直接学习,代表了用于蛋白质对接的图卷积网络的首次成功开发。

相似文献

1
Energy-based graph convolutional networks for scoring protein docking models.
Proteins. 2020 Aug;88(8):1091-1099. doi: 10.1002/prot.25888. Epub 2020 Mar 16.
2
Coarse-grained and atomic resolution biomolecular docking with the ATTRACT approach.
Proteins. 2020 Aug;88(8):1018-1028. doi: 10.1002/prot.25860. Epub 2019 Dec 13.
4
How to choose templates for modeling of protein complexes: Insights from benchmarking template-based docking.
Proteins. 2020 Aug;88(8):1070-1081. doi: 10.1002/prot.25875. Epub 2020 Feb 7.
5
Using restraints in EROS-DOCK improves model quality in pairwise and multicomponent protein docking.
Proteins. 2020 Aug;88(8):1121-1128. doi: 10.1002/prot.25959. Epub 2020 Jul 8.
6
Template-based modeling of diverse protein interactions in CAPRI rounds 38-45.
Proteins. 2020 Aug;88(8):939-947. doi: 10.1002/prot.25845. Epub 2019 Nov 21.
7
Performance of human and server prediction in CAPRI rounds 38-45.
Proteins. 2020 Aug;88(8):1110-1120. doi: 10.1002/prot.25956. Epub 2020 Jul 1.
8
An overview of data-driven HADDOCK strategies in CAPRI rounds 38-45.
Proteins. 2020 Aug;88(8):1029-1036. doi: 10.1002/prot.25869. Epub 2020 Jan 7.
10
ClusPro in rounds 38 to 45 of CAPRI: Toward combining template-based methods with free docking.
Proteins. 2020 Aug;88(8):1082-1090. doi: 10.1002/prot.25887. Epub 2020 Mar 23.

引用本文的文献

1
EquiRank: Improved protein-protein interface quality estimation using protein language-model-informed equivariant graph neural networks.
Comput Struct Biotechnol J. 2024 Dec 30;27:160-170. doi: 10.1016/j.csbj.2024.12.015. eCollection 2025.
2
How to build the virtual cell with artificial intelligence: Priorities and opportunities.
Cell. 2024 Dec 12;187(25):7045-7063. doi: 10.1016/j.cell.2024.11.015.
6
Predicting transcriptional activation domain function using Graph Neural Networks.
bioRxiv. 2024 May 12:2024.05.08.593266. doi: 10.1101/2024.05.08.593266.
7
Leveraging machine learning models for peptide-protein interaction prediction.
RSC Chem Biol. 2024 Mar 13;5(5):401-417. doi: 10.1039/d3cb00208j. eCollection 2024 May 8.
8
Recent advances and challenges in protein complex model accuracy estimation.
Comput Struct Biotechnol J. 2024 Apr 21;23:1824-1832. doi: 10.1016/j.csbj.2024.04.049. eCollection 2024 Dec.
10
A gated graph transformer for protein complex structure quality assessment and its performance in CASP15.
Bioinformatics. 2023 Jun 30;39(39 Suppl 1):i308-i317. doi: 10.1093/bioinformatics/btad203.

本文引用的文献

1
Bayesian Active Learning for Optimization and Uncertainty Quantification in Protein Docking.
J Chem Theory Comput. 2020 Aug 11;16(8):5334-5347. doi: 10.1021/acs.jctc.0c00476. Epub 2020 Jul 6.
2
Blind prediction of homo- and hetero-protein complexes: The CASP13-CAPRI experiment.
Proteins. 2019 Dec;87(12):1200-1221. doi: 10.1002/prot.25838. Epub 2019 Oct 25.
3
iScore: a novel graph kernel-based function for scoring protein-protein docking models.
Bioinformatics. 2020 Jan 1;36(1):112-121. doi: 10.1093/bioinformatics/btz496.
4
Protein model quality assessment using 3D oriented convolutional neural networks.
Bioinformatics. 2019 Sep 15;35(18):3313-3319. doi: 10.1093/bioinformatics/btz122.
5
What method to use for protein-protein docking?
Curr Opin Struct Biol. 2019 Apr;55:1-7. doi: 10.1016/j.sbi.2018.12.010. Epub 2019 Feb 1.
6
RNA3DCNN: Local and global quality assessments of RNA 3D structures using 3D deep convolutional neural networks.
PLoS Comput Biol. 2018 Nov 27;14(11):e1006514. doi: 10.1371/journal.pcbi.1006514. eCollection 2018 Nov.
7
Deep convolutional networks for quality assessment of protein folds.
Bioinformatics. 2018 Dec 1;34(23):4046-4053. doi: 10.1093/bioinformatics/bty494.
8
The ClusPro web server for protein-protein docking.
Nat Protoc. 2017 Feb;12(2):255-278. doi: 10.1038/nprot.2016.169. Epub 2017 Jan 12.
9
DeepQA: improving the estimation of single protein model quality with deep belief networks.
BMC Bioinformatics. 2016 Dec 5;17(1):495. doi: 10.1186/s12859-016-1405-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验