Shuvo Md Hossain, Bhattacharya Debswapna
Department of Computer Science, Prairie View A&M University, Prairie View, 77446, TX, USA.
Department of Computer Science, Virginia Tech, Blacksburg, 24061, VA, USA.
Comput Struct Biotechnol J. 2024 Dec 30;27:160-170. doi: 10.1016/j.csbj.2024.12.015. eCollection 2025.
Quality estimation of the predicted interaction interface of protein complex structural models is not only important for complex model evaluation and selection but also useful for protein-protein docking. Despite recent progress fueled by symmetry-aware deep learning architectures and pretrained protein language models (pLMs), existing methods for estimating protein complex quality have yet to fully exploit the collective potentials of these advances for accurate estimation of protein-protein interface. Here we present EquiRank, an improved protein-protein interface quality estimation method by leveraging the strength of a symmetry-aware E(3) equivariant deep graph neural network (EGNN) and integrating pLM embeddings from the pretrained ESM-2 model. Our method estimates the quality of the protein-protein interface through an effective graph-based representation of interacting residue pairs, incorporating a diverse set of features, including ESM-2 embeddings, and then by learning the representation using symmetry-aware EGNNs. Our experimental results demonstrate improved ranking performance on diverse datasets over existing latest protein complex quality estimation methods including the top-performing CASP15 protein complex quality estimation method VoroIF_GNN and the self-assessment module of AlphaFold-Multimer repurposed for protein complex scoring and across different performance evaluation metrics. Additionally, our ablation studies demonstrate the contributions of both pLMs and the equivariant nature of EGNN for improved protein-protein interface quality estimation performance. EquiRank is freely available at https://github.com/mhshuvo1/EquiRank.
蛋白质复合物结构模型预测的相互作用界面的质量评估不仅对复合物模型的评估和选择很重要,而且对蛋白质-蛋白质对接也很有用。尽管最近在对称感知深度学习架构和预训练蛋白质语言模型(pLMs)的推动下取得了进展,但现有的蛋白质复合物质量评估方法尚未充分利用这些进展的集体潜力来准确估计蛋白质-蛋白质界面。在这里,我们提出了EquiRank,一种改进的蛋白质-蛋白质界面质量评估方法,它利用了对称感知E(3)等变深度图神经网络(EGNN)的优势,并整合了来自预训练的ESM-2模型的pLM嵌入。我们的方法通过对相互作用残基对的有效基于图的表示来估计蛋白质-蛋白质界面的质量,纳入了包括ESM-2嵌入在内的各种特征,然后通过使用对称感知EGNN学习该表示。我们的实验结果表明,在包括顶级的CASP15蛋白质复合物质量评估方法VoroIF_GNN和重新用于蛋白质复合物评分的AlphaFold-Multimer的自我评估模块在内的现有最新蛋白质复合物质量评估方法上,以及在不同的性能评估指标上,在各种数据集上的排名性能都有所提高。此外,我们的消融研究证明了pLMs和EGNN的等变性质对改进蛋白质-蛋白质界面质量评估性能的贡献。EquiRank可在https://github.com/mhshuvo1/EquiRank上免费获取。