Miyazaki M, Uritani M, Fujimura K, Yamakatsu H, Kageyama T, Takahashi K
Department of Molecular Biology, School of Science, Nagoya University, Aichi.
J Biochem. 1988 Mar;103(3):508-21. doi: 10.1093/oxfordjournals.jbchem.a122301.
Cytoplasmic elongation factor 1 alpha (EF-1 alpha) [corrected] was purified to homogeneity in high yield from the two different yeasts Saccharomyces carlsbergensis (S. carls.) and Schizosaccharomyces pombe (S. pombe). The purification was easily achieved by CM-Sephadex column chromatography of the breakthrough fractions from DEAE-Sephadex chromatography of cell-free extracts. The basic proteins have a molecular weight of 47,000 for the S. carls. factor and of 49,000 for the S. pombe factor. While the purified yeast EF-1 alpha s function analogously to other eukaryotic factors and the E. coli EF-Tu in Phe-tRNA binding and polyphenylalanine synthesis, the yeast factor unusually hydrolyzed GTP on yeast ribosomes upon addition of Phe-tRNA in the absence of poly(U) as mRNA. This novelty is probably owing to the yeast ribosomes, which are assumed to lack elongation factor 3-equivalent component(s). Trypsin and chymotrypsin selectively cleaved the two yeast factors to generate resistant fragments with the same molecular weight of 43,000 (by trypsin) and of 44,000 (by chymotrypsin), respectively. Those cleavage sites were characteristically protected by the presence of several ligands bound to EF-1 alpha such as GDP, GTP, and aminoacyl-tRNA. Based on the sequence analysis of the fragments generated by the two proteases, the partial amino acid sequence of the S. carls. EF-1 alpha was deduced to be in accordance with the N-terminal region covering positions (1) to 94 and two Lys residues at the C-terminal end of the predicted total sequence of the Saccharomyces cerevisiae (S. cerev.) factor derived from DNA analysis, except for a few N-terminal residues, confirming the predicted S. cerev. sequence at the protein level. EF-1 beta and EF-1 beta gamma were isolated and highly purified as biologically active entities from the two yeasts. EF-1 beta s from the two yeasts have the same molecular weight of 27,000, whereas component gamma of the S. carls. EF-1 beta gamma showed a higher molecular weight (47,000) than that of the S. pombe factor (40,000). It was also shown that a stoichiometric complex was formed between EF-1 alpha and EF-1 beta gamma from S. pombe. Furthermore, a considerable amount of Phe-tRNA binding activity was distributed in the EF-1H (probably EF-1 alpha beta gamma) fraction from freshly prepared cell-free extracts of yeast.
细胞质延伸因子1α(EF-1α)[已校正]以高产率从两种不同的酵母,即卡尔斯伯酵母(S. carls.)和粟酒裂殖酵母(S. pombe)中纯化至同质。通过对无细胞提取物进行DEAE-葡聚糖凝胶色谱后的穿透组分进行CM-葡聚糖凝胶柱色谱,很容易实现纯化。这两种碱性蛋白的分子量,卡尔斯伯酵母因子为47,000,粟酒裂殖酵母因子为49,000。纯化后的酵母EF-1α在苯丙氨酰-tRNA结合和聚苯丙氨酸合成方面,其功能类似于其他真核因子和大肠杆菌的EF-Tu,但在没有作为mRNA的聚(U)存在的情况下,当加入苯丙氨酰-tRNA时,酵母因子在酵母核糖体上异常地水解GTP。这种新奇现象可能归因于酵母核糖体,推测其缺乏延伸因子3等效成分。胰蛋白酶和胰凝乳蛋白酶选择性地切割这两种酵母因子,分别产生分子量相同的抗性片段,胰蛋白酶切割产生的片段分子量为43,000,胰凝乳蛋白酶切割产生的片段分子量为44,000。这些切割位点的特征是受到与EF-1α结合的几种配体(如GDP、GTP和氨酰-tRNA)的保护。基于两种蛋白酶产生的片段的序列分析,卡尔斯伯酵母EF-1α的部分氨基酸序列被推导为与酿酒酵母(S. cerev.)因子预测全序列的N端区域(覆盖位置1至94)以及C端的两个赖氨酸残基一致,除了少数N端残基,这在蛋白质水平上证实了酿酒酵母的预测序列。从这两种酵母中分离并高度纯化了具有生物活性的EF-1β和EF-1βγ。两种酵母的EF-1β分子量均为27,000,而卡尔斯伯酵母EF-1βγ的γ组分分子量(47,000)高于粟酒裂殖酵母因子的γ组分(40,000)。还表明粟酒裂殖酵母的EF-1α与EF-1βγ之间形成了化学计量复合物。此外,在新鲜制备的酵母无细胞提取物的EF-1H(可能是EF-1αβγ)组分中分布有相当数量的苯丙氨酰-tRNA结合活性。