Suppr超能文献

利用心电图检测二尖瓣反流的人工智能技术。

Artificial intelligence for detecting mitral regurgitation using electrocardiography.

作者信息

Kwon Joon-Myoung, Kim Kyung-Hee, Akkus Zeynettin, Jeon Ki-Hyun, Park Jinsik, Oh Byung-Hee

机构信息

Department of Emergency Medicine, Mediplex Sejong Hospital, Incheon, Republic of Korea; Artificial Intelligence and Big Data Center, Sejong Medical Research Center, Bucheon, Republic of Korea.

Artificial Intelligence and Big Data Center, Sejong Medical Research Center, Bucheon, Republic of Korea; Division of Cardiology, Cardiovascular Center, Mediplex Sejong Hospital, Incheon, Republic of Korea.

出版信息

J Electrocardiol. 2020 Mar-Apr;59:151-157. doi: 10.1016/j.jelectrocard.2020.02.008. Epub 2020 Feb 27.

Abstract

BACKGROUND

Screening and early diagnosis of mitral regurgitation (MR) are crucial for preventing irreversible progression of MR. In this study, we developed and validated an artificial intelligence (AI) algorithm for detecting MR using electrocardiography (ECG).

METHODS

This retrospective cohort study included data from two hospital. An AI algorithm was trained using 56,670 ECGs from 24,202 patients. Internal validation of the algorithm was performed with 3174 ECGs of 3174 patients from one hospital, while external validation was performed with 10,865 ECGs of 10,865 patients from another hospital. The endpoint was the diagnosis of significant MR, moderate to severe, confirmed by echocardiography. We used 500 Hz ECG raw data as predictive variables. Additionally, we showed regions of ECG that have the most significant impact on the decision-making of the AI algorithm using a sensitivity map.

RESULTS

During the internal and external validation, the area under the receiver operating characteristic curve of the AI algorithm using a 12-lead ECG for detecting MR was 0.816 and 0.877, respectively, while that using a single-lead ECG was 0.758 and 0.850, respectively. In the 3157 non-MR individuals, those patients that the AI defined as high risk had a significantly higher chance of development of MR than the low risk group (13.9% vs. 2.6%, p < 0.001) during the follow-up period. The sensitivity map showed the AI algorithm focused on the P-wave and T-wave for MR patients and QRS complex for non-MR patients.

CONCLUSIONS

The proposed AI algorithm demonstrated promising results for MR detecting using 12-lead and single-lead ECGs.

摘要

背景

二尖瓣反流(MR)的筛查和早期诊断对于预防MR的不可逆进展至关重要。在本研究中,我们开发并验证了一种使用心电图(ECG)检测MR的人工智能(AI)算法。

方法

这项回顾性队列研究纳入了两家医院的数据。使用来自24202例患者的56670份心电图对一种AI算法进行了训练。该算法在一家医院3174例患者的3174份心电图上进行了内部验证,同时在另一家医院10865例患者的10865份心电图上进行了外部验证。终点是经超声心动图确认的中重度显著MR的诊断。我们将500Hz的心电图原始数据用作预测变量。此外,我们使用敏感性图展示了对AI算法决策影响最显著的心电图区域。

结果

在内部和外部验证期间,使用12导联心电图检测MR的AI算法的受试者操作特征曲线下面积分别为0.816和0.877,而使用单导联心电图时分别为0.758和0.850。在3157例非MR个体中,那些被AI定义为高风险的患者在随访期间发生MR的几率显著高于低风险组(13.9%对2.6%,p<0.001)。敏感性图显示,AI算法关注MR患者的P波和T波以及非MR患者的QRS波群。

结论

所提出的AI算法在使用12导联和单导联心电图检测MR方面显示出了有前景的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验