Suppr超能文献

使用心电图进行脓毒症筛查的深度学习模型。

Deep-learning model for screening sepsis using electrocardiography.

机构信息

Artificial Intelligence and Big Data Research Center, Sejong Medical Research Institute, Bucheon, Republic of Korea.

Medical Research Team, Medical AI, Co., Seoul, Republic of Korea.

出版信息

Scand J Trauma Resusc Emerg Med. 2021 Oct 3;29(1):145. doi: 10.1186/s13049-021-00953-8.

Abstract

BACKGROUND

Sepsis is a life-threatening organ dysfunction and a major healthcare burden worldwide. Although sepsis is a medical emergency that requires immediate management, screening for the occurrence of sepsis is difficult. Herein, we propose a deep learning-based model (DLM) for screening sepsis using electrocardiography (ECG).

METHODS

This retrospective cohort study included 46,017 patients who were admitted to two hospitals. A total of 1,548 and 639 patients had sepsis and septic shock, respectively. The DLM was developed using 73,727 ECGs from 18,142 patients, and internal validation was conducted using 7774 ECGs from 7,774 patients. Furthermore, we conducted an external validation with 20,101 ECGs from 20,101 patients from another hospital to verify the applicability of the DLM across centers.

RESULTS

During the internal and external validations, the area under the receiver operating characteristic curve (AUC) of the DLM using 12-lead ECG was 0.901 (95% confidence interval, 0.882-0.920) and 0.863 (0.846-0.879), respectively, for screening sepsis and 0.906 (95% confidence interval (CI), 0.877-0.936) and 0.899 (95% CI, 0.872-0.925), respectively, for detecting septic shock. The AUC of the DLM for detecting sepsis using 6-lead and single-lead ECGs was 0.845-0.882. A sensitivity map revealed that the QRS complex and T waves were associated with sepsis. Subgroup analysis was conducted using ECGs from 4,609 patients who were admitted with an infectious disease, and the AUC of the DLM for predicting in-hospital mortality was 0.817 (0.793-0.840). There was a significant difference in the prediction score of DLM using ECG according to the presence of infection in the validation dataset (0.277 vs. 0.574, p < 0.001), including severe acute respiratory syndrome coronavirus 2 (0.260 vs. 0.725, p = 0.018).

CONCLUSIONS

The DLM delivered reasonable performance for sepsis screening using 12-, 6-, and single-lead ECGs. The results suggest that sepsis can be screened using not only conventional ECG devices but also diverse life-type ECG machines employing the DLM, thereby preventing irreversible disease progression and mortality.

摘要

背景

败血症是一种危及生命的器官功能障碍,也是全球主要的医疗保健负担。尽管败血症是一种需要立即治疗的医疗紧急情况,但很难对其进行筛查。在此,我们提出了一种基于深度学习的模型(DLM),用于使用心电图(ECG)筛查败血症。

方法

本回顾性队列研究纳入了两所医院的 46017 名患者。共有 1548 名和 639 名患者分别患有败血症和败血症性休克。该 DLM 使用来自 18142 名患者的 73727 份心电图进行开发,并使用来自 7774 名患者的 7774 份心电图进行内部验证。此外,我们还使用来自另一所医院的 20101 名患者的 20101 份心电图进行了外部验证,以验证 DLM 在不同中心的适用性。

结果

在内部和外部验证中,使用 12 导联 ECG 的 DLM 的接受者操作特征曲线下面积(AUC)分别为 0.901(95%置信区间,0.882-0.920)和 0.863(0.846-0.879),用于筛查败血症,以及 0.906(95%置信区间(CI),0.877-0.936)和 0.899(95%CI,0.872-0.925),用于检测败血症性休克。使用 6 导联和单导联 ECG 检测败血症的 DLM 的 AUC 为 0.845-0.882。敏感性图显示 QRS 复合物和 T 波与败血症有关。对在传染病科就诊的 4609 名患者的心电图进行亚组分析,DLM 预测院内死亡率的 AUC 为 0.817(0.793-0.840)。验证数据集中感染的存在对 DLM 心电图预测评分有显著影响(0.277 对 0.574,p<0.001),包括严重急性呼吸综合征冠状病毒 2(0.260 对 0.725,p=0.018)。

结论

该 DLM 对使用 12 导联、6 导联和单导联 ECG 进行败血症筛查具有合理的性能。结果表明,不仅可以使用常规心电图设备,还可以使用 DLM 对不同生活方式的心电图机进行败血症筛查,从而防止疾病的不可逆转进展和死亡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6511/8489067/e5ad4f9f6407/13049_2021_953_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验