Suppr超能文献

基于低秩判别回归学习的图像分类方法。

Low-rank discriminative regression learning for image classification.

机构信息

College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China; Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen 518060, China; Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ), Shenzhen University, Shenzhen 518060, China.

College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China; Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518060, China.

出版信息

Neural Netw. 2020 May;125:245-257. doi: 10.1016/j.neunet.2020.02.007. Epub 2020 Feb 19.

Abstract

As a famous multivariable analysis technique, regression methods, such as ridge regression, are widely used for image representation and dimensionality reduction. However, the metric of ridge regression and its variants is always the Frobenius norm (F-norm), which is sensitive to outliers and noise in data. At the same time, the performance of the ridge regression and its extensions is limited by the class number of the data. To address these problems, we propose a novel regression learning method which named low-rank discriminative regression learning (LDRL) for image representation. LDRL assumes that the input data is corrupted and thus the L norm can be used as a sparse constraint on the noised matrix to recover the clean data for regression, which can improve the robustness of the algorithm. Due to learn a novel project matrix that is not limited by the number of classes, LDRL is suitable for classifying the data set no matter whether there is a small or large number of classes. The performance of the proposed LDRL is evaluated on six public image databases. The experimental results prove that LDRL obtains better performance than existing regression methods.

摘要

作为一种著名的多元分析技术,回归方法,如岭回归,被广泛用于图像表示和降维。然而,岭回归及其变体的度量标准始终是 Frobenius 范数(F-范数),它对数据中的异常值和噪声很敏感。同时,岭回归及其扩展的性能受到数据类数的限制。为了解决这些问题,我们提出了一种新的回归学习方法,称为低秩判别回归学习(LDRL),用于图像表示。LDRL 假设输入数据受到污染,因此 L 范数可以作为噪声矩阵的稀疏约束,以恢复回归的清洁数据,从而提高算法的鲁棒性。由于学习到一个不受类数限制的新投影矩阵,LDRL 适用于分类数据集,无论类数是小是大。在六个公共图像数据库上评估了所提出的 LDRL 的性能。实验结果证明,LDRL 比现有的回归方法获得了更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验