Suppr超能文献

假声带对声门波速场的影响。

Effects of False Vocal Folds on Intraglottal Velocity Fields.

机构信息

Department of Otolaryngology - Head and Neck Surgery, University of Cincinnati, Cincinnati, Ohio.

Department of Otolaryngology - Head and Neck Surgery, University of Cincinnati, Cincinnati, Ohio.

出版信息

J Voice. 2021 Sep;35(5):695-702. doi: 10.1016/j.jvoice.2020.02.001. Epub 2020 Mar 5.

Abstract

Previous models have theorized that, during phonation, skewing of the glottal waveform (which is correlated with acoustic intensity) occurred because of inertance of the vocal tract. Later, we reported that skewing of the flow rate waveform can occur without the presence of a vocal tract in an excised canine larynx. We hypothesized that in the absence of a vocal tract, the skewing formed when dynamic pressures acted on the glottal wall during the closing phase; such pressures were greatly affected by formation of intraglottal vortices. In this study, we aim to identify how changes in false vocal folds constriction can affect the acoustics and intraglottal flow dynamics. The intraglottal flow measurements were made using particle image velocimetry in an excised canine larynx where a vocal tract model was placed above the larynx and the constriction between the false vocal folds was varied. Our results show that for similar values of subglottal pressures, the skewing of the glottal waveform, strength of the intraglottal vortices, and acoustic energy increased as the constriction between the false vocal folds was increased. These preliminary findings suggest that acoustic intensity during phonation can be increased by the addition of a vocal tract with false fold constriction.

摘要

先前的模型理论认为,在发声过程中,声门波的倾斜(与声强相关)是由于声道的惯性造成的。后来,我们报告说,在切除的犬喉中不存在声道的情况下,流速波形也会发生倾斜。我们假设,在没有声道的情况下,当动态压力在闭合阶段作用于声门壁时,会形成倾斜;这种压力受到声门内涡流形成的极大影响。在这项研究中,我们旨在确定假声带收缩的变化如何影响声学和声门内流动动力学。使用颗粒图像测速法在切除的犬喉中进行了声门内流动测量,在该喉中,将声道模型放置在喉上方,并改变假声带之间的收缩。我们的结果表明,对于类似的声门下压力值,声门波的倾斜、声门内涡流的强度和声波能量随着假声带之间的收缩增加而增加。这些初步发现表明,通过添加具有假皱缩的声道,可以增加发声时的声强。

相似文献

1
Effects of False Vocal Folds on Intraglottal Velocity Fields.
J Voice. 2021 Sep;35(5):695-702. doi: 10.1016/j.jvoice.2020.02.001. Epub 2020 Mar 5.
2
Direct measurement of planar flow rate in an excised canine larynx model.
Laryngoscope. 2015 Feb;125(2):383-8. doi: 10.1002/lary.24866. Epub 2014 Aug 5.
3
Direct simultaneous measurement of intraglottal geometry and velocity fields in excised larynges.
Laryngoscope. 2014 Apr;124 Suppl 2:S1-13. doi: 10.1002/lary.24512. Epub 2014 Feb 7.
4
Medial Surface Dynamics as a Function of Subglottal Pressure in a Canine Larynx Model.
J Voice. 2021 Jan;35(1):69-76. doi: 10.1016/j.jvoice.2019.07.015. Epub 2019 Aug 3.
5
Flow fields and acoustics in a unilateral scarred vocal fold model.
Ann Otol Rhinol Laryngol. 2009 Jan;118(1):44-50. doi: 10.1177/000348940911800108.
6
Quantification of the Intraglottal Pressure Induced by Flow Separation Vortices Using Large Eddy Simulation.
J Voice. 2021 Nov;35(6):822-831. doi: 10.1016/j.jvoice.2020.02.013. Epub 2020 Apr 6.
8
Intraglottal geometry and velocity measurements in canine larynges.
J Acoust Soc Am. 2014 Jan;135(1):380-8. doi: 10.1121/1.4837222.
9
Intraglottal Pressure: A Comparison Between Male and Female Larynxes.
J Voice. 2020 Nov;34(6):813-822. doi: 10.1016/j.jvoice.2019.06.005. Epub 2019 Jul 13.
10
Intraglottal pressure distribution computed from empirical velocity data in canine larynx.
J Biomech. 2014 Apr 11;47(6):1287-93. doi: 10.1016/j.jbiomech.2014.02.023. Epub 2014 Feb 24.

引用本文的文献

1
Volumetric supraglottal jet flow field analysis in synthetic multilayered self-oscillating vocal fold model.
Exp Fluids. 2025 Jan;66(1). doi: 10.1007/s00348-024-03936-4. Epub 2024 Dec 14.
2
Acoustic, aerodynamic, and vibrational effects of ventricular folds adduction in an ex vivo experiment.
Laryngoscope Investig Otolaryngol. 2024 Sep 9;9(5):e70008. doi: 10.1002/lio2.70008. eCollection 2024 Oct.
3
Fluid-Structure Interaction Analysis of Aerodynamic and Elasticity Forces During Vocal Fold Vibration.
J Voice. 2025 Mar;39(2):293-303. doi: 10.1016/j.jvoice.2022.08.030. Epub 2022 Sep 28.

本文引用的文献

1
Aeroacoustic source characterization in a physical model of phonation.
J Acoust Soc Am. 2019 Aug;146(2):1230. doi: 10.1121/1.5122787.
2
Medial Surface Dynamics as a Function of Subglottal Pressure in a Canine Larynx Model.
J Voice. 2021 Jan;35(1):69-76. doi: 10.1016/j.jvoice.2019.07.015. Epub 2019 Aug 3.
3
The Effect of False Vocal Folds on Laryngeal Flow Resistance in a Tubular Three-dimensional Computational Laryngeal Model.
J Voice. 2017 May;31(3):275-281. doi: 10.1016/j.jvoice.2016.04.006. Epub 2016 May 10.
4
Comparison of glottal flow rate characteristics based on experimental and computational data.
J Acoust Soc Am. 2015 Oct;138(4):2427-9. doi: 10.1121/1.4932022.
5
Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx.
J Biomech. 2015 May 1;48(7):1248-57. doi: 10.1016/j.jbiomech.2015.03.010. Epub 2015 Mar 19.
6
Intraglottal velocity and pressure measurements in a hemilarynx model.
J Acoust Soc Am. 2015 Feb;137(2):935-43. doi: 10.1121/1.4906833.
8
A hybrid approach to the computational aeroacoustics of human voice production.
Biomech Model Mechanobiol. 2015 Jun;14(3):473-88. doi: 10.1007/s10237-014-0617-1. Epub 2014 Oct 7.
9
Direct measurement of planar flow rate in an excised canine larynx model.
Laryngoscope. 2015 Feb;125(2):383-8. doi: 10.1002/lary.24866. Epub 2014 Aug 5.
10
Intraglottal pressure distribution computed from empirical velocity data in canine larynx.
J Biomech. 2014 Apr 11;47(6):1287-93. doi: 10.1016/j.jbiomech.2014.02.023. Epub 2014 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验