Suppr超能文献

声发音物理模型中的空气动力噪声源特征描述。

Aeroacoustic source characterization in a physical model of phonation.

机构信息

Applied Research Laboratory, Pennsylvania State University, State College, Pennsylvania 16803, USA.

出版信息

J Acoust Soc Am. 2019 Aug;146(2):1230. doi: 10.1121/1.5122787.

Abstract

This paper presents measurements conducted in a physical model of the adult human airway. The goals of this work are to (1) benchmark the physical model to excised larynx models in the literature and (2) empirically demonstrate the relationship between vocal fold drag and sound production. Results from the airway model are first benchmarked to published time-averaged behavior of excised larynx models. The airway model in this work exhibited higher glottal volume flow, lower glottal resistance, and less fundamental frequency variation than excised larynx models. Next, concurrent measurements of source behavior and radiated sound were compared. Unsteady transglottal pressure (a surrogate measure for vocal fold drag) and radiated sound, measured at the mouth, showed good correlation. In particular, the standard deviation and the ratio of the power of the first and second harmonics of the transglottal and mouth pressures were strongly correlated. This empirical result supports the assertion that vocal fold drag is the principal source of sound in phonation.

摘要

本文介绍了在成人气道物理模型中进行的测量。这项工作的目标是:(1) 将物理模型与文献中离体喉模型进行基准测试;(2) 从经验上证明声带阻力与发声之间的关系。气道模型的结果首先与已发表的离体喉模型的时间平均行为进行基准测试。与离体喉模型相比,本工作中的气道模型表现出更高的声门容积流量、更低的声门阻力和更小的基频变化。接下来,对声源行为和辐射声的同时测量进行了比较。跨声门压力(声带阻力的替代测量)和在口部测量的辐射声之间显示出良好的相关性。特别是,跨声门压力和口部压力的基频和二次谐波的功率的标准差和比值具有很强的相关性。这一经验结果支持了声带阻力是发声的主要声源的说法。

相似文献

1
Aeroacoustic source characterization in a physical model of phonation.
J Acoust Soc Am. 2019 Aug;146(2):1230. doi: 10.1121/1.5122787.
2
3
An experimental analysis of the pressures and flows within a driven mechanical model of phonation.
J Acoust Soc Am. 2006 May;119(5 Pt 1):3011-21. doi: 10.1121/1.2186429.
4
The effect of vocal fold adduction on the acoustic quality of phonation: ex vivo investigations.
J Voice. 2012 Nov;26(6):698-705. doi: 10.1016/j.jvoice.2011.09.012. Epub 2012 May 11.
5
The influence of subglottal acoustics on laboratory models of phonation.
J Acoust Soc Am. 2006 Sep;120(3):1558-69. doi: 10.1121/1.2225682.
6
Resonance tube phonation in water: High-speed imaging, electroglottographic and oral pressure observations of vocal fold vibrations--a pilot study.
Logoped Phoniatr Vocol. 2015 Oct;40(3):113-21. doi: 10.3109/14015439.2014.913682. Epub 2014 May 28.
8
The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges.
J Voice. 2018 Jul;32(4):396-402. doi: 10.1016/j.jvoice.2017.06.013. Epub 2017 Aug 18.
9
Vibratory Dynamics of Four Types of Excised Larynx Phonations.
J Voice. 2016 Nov;30(6):649-655. doi: 10.1016/j.jvoice.2015.08.012. Epub 2015 Oct 21.
10
Theoretical assessment of unsteady aerodynamic effects in phonation.
J Acoust Soc Am. 2006 Sep;120(3):1578-88. doi: 10.1121/1.2215408.

引用本文的文献

1
Synthetic, self-oscillating vocal fold models for voice production researcha).
J Acoust Soc Am. 2024 Aug 1;156(2):1283-1308. doi: 10.1121/10.0028267.
2
Computer-Implemented Articulatory Models for Speech Production: A Review.
Front Robot AI. 2022 Mar 8;9:796739. doi: 10.3389/frobt.2022.796739. eCollection 2022.
3
Vortex Formation Times in the Glottal Jet, Measured in a Scaled-Up Model.
Fluids (Basel). 2021 Nov;6(11). doi: 10.3390/fluids6110412. Epub 2021 Nov 15.
4
Phase-averaged and cycle-to-cycle analysis of jet dynamics in a scaled up vocal-fold model.
J Fluid Mech. 2021 Jul 10;918. doi: 10.1017/jfm.2021.365. Epub 2021 May 17.
5
Cycle-to-cycle flow variations in a square duct with a symmetrically oscillating constriction.
Fluid Dyn Res. 2020 Feb;52(1). doi: 10.1088/1873-7005/ab52bf. Epub 2019 Nov 27.
6
Embedded 3D printing of multi-layer, self-oscillating vocal fold models.
J Biomech. 2021 May 24;121:110388. doi: 10.1016/j.jbiomech.2021.110388. Epub 2021 Mar 20.
7
Volume velocity in a canine larynx model using time‑resolved tomographic particle image velocimetry.
Exp Fluids. 2020 Feb;61(2). doi: 10.1007/s00348-020-2896-x. Epub 2020 Feb 12.
8
Effects of False Vocal Folds on Intraglottal Velocity Fields.
J Voice. 2021 Sep;35(5):695-702. doi: 10.1016/j.jvoice.2020.02.001. Epub 2020 Mar 5.

本文引用的文献

1
Effect of vocal fold asymmetries on glottal flow.
Laryngoscope. 2016 Nov;126(11):2534-2538. doi: 10.1002/lary.25948. Epub 2016 Mar 12.
2
Direct measurement of planar flow rate in an excised canine larynx model.
Laryngoscope. 2015 Feb;125(2):383-8. doi: 10.1002/lary.24866. Epub 2014 Aug 5.
3
Intraglottal pressure distribution computed from empirical velocity data in canine larynx.
J Biomech. 2014 Apr 11;47(6):1287-93. doi: 10.1016/j.jbiomech.2014.02.023. Epub 2014 Feb 24.
4
Intraglottal geometry and velocity measurements in canine larynges.
J Acoust Soc Am. 2014 Jan;135(1):380-8. doi: 10.1121/1.4837222.
5
Phonatory characteristics of the excised human larynx in comparison to other species.
J Voice. 2013 Jul;27(4):441-7. doi: 10.1016/j.jvoice.2013.03.013.
6
Vibratory responses of synthetic, self-oscillating vocal fold models.
J Acoust Soc Am. 2012 Nov;132(5):3428-38. doi: 10.1121/1.4754551.
7
Source-tract interaction with prescribed vocal fold motion.
J Acoust Soc Am. 2012 Apr;131(4):2999-3016. doi: 10.1121/1.3685824.
8
On the role of glottis-interior sources in the production of voiced sound.
J Acoust Soc Am. 2012 Feb;131(2):1391-400. doi: 10.1121/1.3672655.
9
ON THE GENERALISED FANT EQUATION.
J Sound Vib. 2011 Jun 20;330(13):3123-3140. doi: 10.1016/j.jsv.2011.01.017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验