Zipser D, Andersen R A
Institute for Cognitive Science, University of California, San Diego, La Jolla 92093.
Brain Res Bull. 1988 Sep;21(3):505-12. doi: 10.1016/0361-9230(88)90166-9.
The back-propagation learning procedure can be used to train simulated neural networks to compute arbitrary functions. We have recently shown that when such a network is trained to carry out the transformation of stimulus location to head-centered coordinates that occurs in parietal area 7a, the response properties of certain units in the network closely resemble neurons found in area 7a. The back-propagation procedure requires the use of a teacher. Here we examine the effect of using different kinds of teachers. As long as the teacher represents information about stimulus location in head-centered coordinates, the trained network contains units of the kind found in area 7a. Differences in teacher format only effect the quantitative distribution of the different unit types. When the teacher does not represent stimulus location explicitly, the network does not contain units of the required kind.
反向传播学习过程可用于训练模拟神经网络以计算任意函数。我们最近表明,当训练这样一个网络来执行在顶叶7a区发生的将刺激位置转换为以头部为中心的坐标时,网络中某些单元的响应特性与在7a区发现的神经元非常相似。反向传播过程需要使用一个教师信号。在这里,我们研究使用不同类型教师信号的效果。只要教师信号表示以头部为中心的坐标中的刺激位置信息,训练后的网络就包含7a区中发现的那种单元。教师信号格式的差异仅影响不同单元类型的定量分布。当教师信号没有明确表示刺激位置时,网络就不包含所需类型的单元。