Mazzoni P, Andersen R A, Jordan M I
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139.
Proc Natl Acad Sci U S A. 1991 May 15;88(10):4433-7. doi: 10.1073/pnas.88.10.4433.
Many recent studies have used artificial neural network algorithms to model how the brain might process information. However, back-propagation learning, the method that is generally used to train these networks, is distinctly "unbiological." We describe here a more biologically plausible learning rule, using reinforcement learning, which we have applied to the problem of how area 7a in the posterior parietal cortex of monkeys might represent visual space in head-centered coordinates. The network behaves similarly to networks trained by using back-propagation and to neurons recorded in area 7a. These results show that a neural network does not require back propagation to acquire biologically interesting properties.
最近许多研究使用人工神经网络算法来模拟大脑处理信息的方式。然而,反向传播学习,即通常用于训练这些网络的方法,明显是“非生物学的”。我们在此描述一种更具生物学合理性的学习规则,即使用强化学习,我们已将其应用于猴子后顶叶皮层7a区如何以头部为中心的坐标来表征视觉空间这一问题。该网络的行为类似于使用反向传播训练的网络以及在7a区记录的神经元。这些结果表明,神经网络不需要反向传播就能获得具有生物学意义的特性。