Suppr超能文献

双原发性肺癌的预后因素分析与列线图构建:一项基于人群的研究。

Prognostic Factors Analysis and Nomogram Construction of Dual Primary Lung Cancer: A Population Study.

机构信息

Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.

Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan 430071, China.

出版信息

Biomed Res Int. 2020 Feb 19;2020:7206591. doi: 10.1155/2020/7206591. eCollection 2020.

Abstract

As a special type of lung cancer, multiple primary lung cancer (MPLC) has unique biological characteristics, and its research remains limited. The aim of our research was to identify prognostic factors and construct a prognostic nomogram of dual primary lung cancer (DPLC). A population cohort study of patients with DPLC was conducted using the extracted data from the Surveillance, Epidemiology, and End Results (SEER) database. Relevant survival variables were identified using the Cox proportional hazard model. Prognostic nomogram was performed and its predictive performance was validated via the modeling and validating cohort data. Additionally, propensity score matching (PSM) was also applied to evaluate whether surgery affected the OS of this study population. 5411 eligible DPLC patients were included in this study cohort, with 41.0% of 3-year OS rate and 27.7% of 5-year OS rate. Age, sex, race, grade, stage, lymph node (LN) metastasis, histological type, primary site, and surgery were considered to be prognostic factors of OS. The C-indexes of the established nomogram were 0.70 (95% CI (0.69, 0.71)) in the modeling group and 0.70 (95% CI (0.68, 0.72)) in the validation group, which showed an ideal model discrimination ability. AUC and calibration plots of 3- and 5-year OS also proved the good performance of the established nomogram. After 1 : 1 PSM, surgery can potentially reduce the risk of OS (HR = 0.63, 95% CI: 0.56-0.72) of DPLC. The prognostic nomogram with reliable performance was developed to predict 3- and 5-year OS rates, which could assist clinicians to make more reasonable survival prediction for DPLC patients. For patients without absolute surgical contraindications, surgery should be actively considered.

摘要

作为一种特殊类型的肺癌,多原发肺癌(MPLC)具有独特的生物学特征,其研究仍然有限。我们的研究目的是确定双原发肺癌(DPLC)的预后因素并构建预后列线图。使用从监测、流行病学和最终结果(SEER)数据库中提取的数据进行了 DPLC 患者的人群队列研究。使用 Cox 比例风险模型确定相关生存变量。通过建模和验证队列数据进行预后列线图,并验证其预测性能。此外,还应用倾向评分匹配(PSM)来评估手术是否影响本研究人群的 OS。本研究队列纳入了 5411 例符合条件的 DPLC 患者,3 年 OS 率为 41.0%,5 年 OS 率为 27.7%。年龄、性别、种族、分级、分期、淋巴结(LN)转移、组织学类型、原发部位和手术被认为是 OS 的预后因素。建立的列线图在建模组中的 C 指数为 0.70(95%CI(0.69,0.71)),在验证组中的 C 指数为 0.70(95%CI(0.68,0.72)),表明模型具有理想的区分能力。3 年和 5 年 OS 的 AUC 和校准图也证明了建立的列线图具有良好的性能。经过 1:1 PSM 后,手术可能降低 DPLC 的 OS 风险(HR=0.63,95%CI:0.56-0.72)。该具有可靠性能的预后列线图用于预测 3 年和 5 年 OS 率,这可以帮助临床医生为 DPLC 患者做出更合理的生存预测。对于没有绝对手术禁忌证的患者,应积极考虑手术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c35/7049836/441bddc2bc98/BMRI2020-7206591.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验