UCIBIO/REQUIMTE. Departamento de Ciências Biológicas. Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto. Porto, Porto, Portugal.
Grupo de Investigación Biomédica en Sepsis - BioSepsis. Hospital Universitario Río Hortega, Instituto de Investigación Biomédica de Salamanca (IBSAL), Valladollid, Spain.
Microb Genom. 2020 Jun;6(6). doi: 10.1099/mgen.0.000350. Epub 2020 Mar 9.
Linezolid-resistant (LREfs) carrying are increasingly reported globally from multiple sources, but we lack a comprehensive analysis of human and animal -LREfs strains. To assess if is dispersed in isolates with varied genetic backgrounds or with common genetic features, we investigated the phylogenetic structure, genetic content [antimicrobial resistance (AMR), virulence, prophages, plasmidome] and -containing platforms of 27 publicly available -positive genomes from different hosts in seven countries. At the genome-level analysis, an in-house database with 64 virulence genes was tested for the first time. Our analysis showed a diversity of clones and adaptive gene sequences related to a wide range of genera from . Phylogenies of core and accessory genomes were not congruent, and at least PAI-associated and prophage genes contribute to such differences. Epidemiologically unrelated clones (ST21, ST476-like and ST489) obtained from human clinical and animal hosts in different continents over eight years (2010-2017) could be phylogenetically related (3-126 SNPs difference). was located on the chromosome within a Tn-like element (=10) or on medium-size plasmids (30-60 kb; =14) belonging to main plasmid families (RepA_N/Inc18/Rep_3). In most cases, the immediate gene vicinity of was generally identical in chromosomal (Tn) or plasmid () backbones. Tn was always inserted into the same ∆ integration site and embedded in a 32 kb chromosomal platform common to strains from different origins (patients, healthy humans, and animals) in Europe, Africa, and Asia during 2012-2017. This platform is conserved among hundreds of genomes and proposed as a chromosomal hotspot for integration. The finding of in strains sharing common adaptive features and genetic backgrounds across different hosts and countries suggests the occurrence of common and independent genetic events occurring in distant regions and might explain the easy generation of -positive strains. It also anticipates a dramatic increase of carriage and spread with a serious impact on the efficacy of linezolid for the treatment of Gram-positive infections.
耐(linezolid-resistant, LRE)株在全球范围内的报告越来越多,来自多个来源,但我们缺乏对人类和动物 LRE 株的全面分析。为了评估是否在具有不同遗传背景或具有共同遗传特征的分离株中传播,我们调查了来自七个国家的不同宿主的 27 个公开可用的 -阳性基因组的系统发育结构、遗传内容(抗微生物药物耐药性(antimicrobial resistance, AMR)、毒力、原噬菌体、质粒组)和包含平台。在基因组水平分析中,首次测试了一个包含 64 个毒力基因的内部数据库。我们的分析显示了多样性的克隆和与广泛的属相关的适应性基因序列。核心和辅助基因组的系统发育树不一致,至少 PAI 相关和原噬菌体基因促成了这种差异。来自不同大陆的人类临床和动物宿主的流行病学上无关的克隆(ST21、ST476 样和 ST489)在八年(2010-2017 年)内可以具有系统发育关系(3-126 个 SNP 差异)。位于染色体内 Tn 样元件(=10)或属于主要质粒家族(RepA_N/Inc18/Rep_3)的中大小质粒(30-60kb;=14)上。在大多数情况下,染色体(Tn)或质粒()骨架上的 紧邻基因附近通常是相同的。Tn 总是插入相同的∆整合位点,并嵌入到 2012-2017 年期间来自不同起源(患者、健康人和动物)的菌株中共同的 32kb 染色体平台中。该平台在来自不同国家的数百个 基因组中保守,并被提议为 整合的染色体热点。在具有不同遗传背景和遗传背景的分离株中发现 表明发生了共同和独立的遗传事件,这些事件发生在遥远的地区,并可能解释了 阳性菌株的容易产生。它还预示着 携带和传播的急剧增加,对利奈唑胺治疗革兰氏阳性感染的疗效产生严重影响。