IEEE Trans Cybern. 2021 Jun;51(6):3143-3156. doi: 10.1109/TCYB.2019.2962865. Epub 2021 May 18.
Recently, evolutionary multitasking (EMT) has been proposed in the field of evolutionary computation as a new search paradigm, for solving multiple optimization tasks simultaneously. By sharing useful traits found along the evolutionary search process across different optimization tasks, the optimization performance on each task could be enhanced. The autoencoding-based EMT is a recently proposed EMT algorithm. In contrast to most existing EMT algorithms, which conduct knowledge transfer across tasks implicitly via crossover, it intends to perform knowledge transfer explicitly among tasks in the form of task solutions, which enables the employment of task-specific search mechanisms for different optimization tasks in EMT. However, the autoencoding-based explicit EMT can only work on continuous optimization problems. It will fail on combinatorial optimization problems, which widely exist in real-world applications, such as scheduling problem, routing problem, and assignment problem. To the best of our knowledge, there is no existing effort working on explicit EMT for combinatorial optimization problems. Taking this cue, in this article, we thus embark on a study toward explicit EMT for combinatorial optimization. In particular, by using vehicle routing as an illustrative combinatorial optimization problem, the proposed explicit EMT algorithm (EEMTA) mainly contains a weighted l -norm-regularized learning process for capturing the transfer mapping, and a solution-based knowledge transfer process across vehicle routing problems (VRPs). To evaluate the efficacy of the proposed EEMTA, comprehensive empirical studies have been conducted with the commonly used vehicle routing benchmarks in multitasking environment, against both the state-of-the-art EMT algorithm and the traditional single-task evolutionary solvers. Finally, a real-world combinatorial optimization application, that is, the package delivery problem (PDP), is also presented to further confirm the efficacy of the proposed algorithm.
最近,进化多任务处理(EMT)在进化计算领域被提出,作为一种新的搜索范例,可以同时解决多个优化任务。通过在不同的优化任务中共享进化搜索过程中发现的有用特征,可以提高每个任务的优化性能。基于自动编码的 EMT 是最近提出的 EMT 算法。与大多数通过交叉操作在任务之间隐式进行知识转移的现有 EMT 算法不同,它旨在以任务解决方案的形式在任务之间显式地进行知识转移,这使得 EMT 中可以为不同的优化任务采用特定于任务的搜索机制。然而,基于自动编码的显式 EMT 只能在连续优化问题上工作。它将在组合优化问题上失败,组合优化问题广泛存在于实际应用中,如调度问题、路由问题和分配问题。据我们所知,目前还没有针对组合优化问题的显式 EMT 的研究工作。鉴于此,本文我们着手研究组合优化问题的显式 EMT。具体来说,通过使用车辆路径问题作为一个说明性的组合优化问题,所提出的显式 EMT 算法(EEMTA)主要包含一个加权 l -范数正则化学习过程,用于捕获转移映射,以及一个基于解决方案的知识在车辆路径问题(VRP)之间的转移过程。为了评估所提出的 EEMTA 的有效性,在多任务环境中使用常用的车辆路径基准进行了全面的实证研究,将其与最先进的 EMT 算法和传统的单任务进化求解器进行了比较。最后,还提出了一个实际的组合优化应用,即包裹投递问题(PDP),以进一步验证算法的有效性。