IEEE Trans Cybern. 2021 May;51(5):2563-2576. doi: 10.1109/TCYB.2020.2974100. Epub 2021 Apr 15.
A multifactorial evolutionary algorithm (MFEA) is a recently proposed algorithm for evolutionary multitasking, which optimizes multiple optimization tasks simultaneously. With the design of knowledge transfer among different tasks, MFEA has demonstrated the capability to outperform its single-task counterpart in terms of both convergence speed and solution quality. In MFEA, the knowledge transfer across tasks is realized via the crossover between solutions that possess different skill factors. This crossover is thus essential to the performance of MFEA. However, we note that the present MFEA and most of its existing variants only employ a single crossover for knowledge transfer, and fix it throughout the evolutionary search process. As different crossover operators have a unique bias in generating offspring, the appropriate configuration of crossover for knowledge transfer in MFEA is necessary toward robust search performance, for solving different problems. Nevertheless, to the best of our knowledge, there is no effort being conducted on the adaptive configuration of crossovers in MFEA for knowledge transfer, and this article thus presents an attempt to fill this gap. In particular, here, we first investigate how different types of crossover affect the knowledge transfer in MFEA on both single-objective (SO) and multiobjective (MO) continuous optimization problems. Furthermore, toward robust and efficient multitask optimization performance, we propose a new MFEA with adaptive knowledge transfer (MFEA-AKT), in which the crossover operator employed for knowledge transfer is self-adapted based on the information collected along the evolutionary search process. To verify the effectiveness of the proposed method, comprehensive empirical studies on both SO and MO multitask benchmarks have been conducted. The experimental results show that the proposed MFEA-AKT is able to identify the appropriate knowledge transfer crossover for different optimization problems and even at different optimization stages along the search, which thus leads to superior or competitive performances when compared to the MFEAs with fixed knowledge transfer crossover operators.
一种多因子进化算法(MFEA)是一种最近提出的用于进化多任务的算法,它可以同时优化多个优化任务。通过在不同任务之间设计知识转移,MFEA 表现出在收敛速度和解决方案质量方面都优于其单任务对应物的能力。在 MFEA 中,通过具有不同技能因素的解决方案之间的交叉实现了任务之间的知识转移。因此,这种交叉对于 MFEA 的性能至关重要。然而,我们注意到,目前的 MFEA 和其大多数现有变体仅使用单一交叉进行知识转移,并在整个进化搜索过程中固定它。由于不同的交叉算子在生成后代方面具有独特的偏向性,因此对于稳健的搜索性能,对于解决不同的问题,在 MFEA 中进行知识转移的适当配置交叉算子是必要的。然而,据我们所知,目前还没有针对 MFEA 中的知识转移进行交叉自适应配置的努力,因此本文试图填补这一空白。特别是,在这里,我们首先研究了不同类型的交叉如何影响 MFEA 在单目标(SO)和多目标(MO)连续优化问题上的知识转移。此外,为了实现稳健和高效的多任务优化性能,我们提出了一种具有自适应知识转移的新的 MFEA(MFEA-AKT),其中用于知识转移的交叉算子是根据进化搜索过程中收集的信息自适应选择的。为了验证所提出方法的有效性,我们对 SO 和 MO 多任务基准进行了全面的实证研究。实验结果表明,所提出的 MFEA-AKT 能够识别出适用于不同优化问题的适当知识转移交叉算子,甚至在搜索过程中的不同优化阶段也是如此,因此与具有固定知识转移交叉算子的 MFEA 相比,具有更好或更具竞争力的性能。