Suppr超能文献

关于鱼类病原体的细菌生长建模新见解

New Insights into Modelling Bacterial Growth with Reference to the Fish Pathogen .

作者信息

Powell Christopher D, López Secundino, France James

机构信息

Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.

Departamento de Producción Animal, Universidad de León, E-24007 León, Spain.

出版信息

Animals (Basel). 2020 Mar 5;10(3):435. doi: 10.3390/ani10030435.

Abstract

Two new models, based upon the principles promulgated by Baranyi and co-workers are presented and resulting growth functions evaluated based upon their ability to mimic bacterial growth of the fish pathogen . These growth functions make use of a dampening function to suppress potential growth, represented by a logistic, and are derived from rate:state differential equations. Dampening effects are represented by a rectangular hyperbola or a simple exponential, incorporated into a logistic differential equation and solved analytically resulting in two newly derived growth equations, viz. logistic × hyperbola (log × hyp) and logistic × exponential (log × exp). These characteristics result in flexible and robust growth functions that can be expressed as equations with biologically meaningful parameters. The newly derived functions (log × hyp and log × exp), along with the Baranyi (BAR), simple logistic (LOG) and its modified form (MLOG) were evaluated based upon examination of residuals and measures of goodness-of-fit and cross-validation. Using these criteria, log × hyp, log × exp and BAR performed better than, or at least equally well as, LOG and MLOG. In contrast with log × exp and BAR, log × hyp can be easily manipulated mathematically allowing for simple algebraic expressions for time and microbial biomass at inflexion point, in addition to maximum and scaled maximum growth rates.

摘要

本文提出了基于巴拉尼及其同事所公布原理的两个新模型,并根据它们模拟鱼类病原体细菌生长的能力对所得生长函数进行了评估。这些生长函数利用一个阻尼函数来抑制以逻辑斯蒂函数表示的潜在生长,且由速率 - 状态微分方程推导得出。阻尼效应由一个矩形双曲线或一个简单指数表示,将其纳入逻辑斯蒂微分方程并进行解析求解,从而得到两个新推导的生长方程,即逻辑斯蒂×双曲线(log×hyp)和逻辑斯蒂×指数(log×exp)。这些特性产生了灵活且稳健的生长函数,它们可以表示为具有生物学意义参数的方程。基于残差检验、拟合优度和交叉验证的度量,对新推导的函数(log×hyp和log×exp)以及巴拉尼模型(BAR)、简单逻辑斯蒂模型(LOG)及其修正形式(MLOG)进行了评估。使用这些标准,log×hyp、log×exp和BAR的表现优于或至少与LOG和MLOG一样好。与log×exp和BAR不同,log×hyp在数学上易于处理,除了最大和缩放后的最大生长速率外,还能给出拐点处时间和微生物生物量的简单代数表达式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05e7/7143051/e3e341ac1dee/animals-10-00435-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验