Suppr超能文献

采用双边滤波技术提高结构振动数据的去噪效果。

Improved Denoising of Structural Vibration Data Employing Bilateral Filtering.

机构信息

School of Civil Engineering, Jilin Jianzhu University, Changchun 130118, China.

Department of Civil and Environmental Engineering, Portland State University, Portland, OR 97201, USA.

出版信息

Sensors (Basel). 2020 Mar 5;20(5):1423. doi: 10.3390/s20051423.

Abstract

With the continuous advancement of data acquisition and signal processing, sensors, and wireless communication, copious research work has been done using vibration response signals for structural damage detection. However, in actual projects, vibration signals are often subject to noise interference during acquisition and transmission, thereby reducing the accuracy of damage identification. In order to effectively remove the noise interference, bilateral filtering, a filtering method commonly used in the field of image processing for improving data signal-to-noise ratio was introduced. Based on the Gaussian filter, the method constructs a bilateral filtering kernel function by multiplying the spatial proximity Gaussian kernel function and the numerical similarity Gaussian kernel function and replaces the current data with the data obtained by weighting the neighborhood data, thereby implementing filtering. By processing the simulated data and experimental data, introducing a time-frequency analysis method and a method for calculating the time-frequency spectrum energy, the denoising abilities of median filtering, wavelet denoising and bilateral filtering were compared. The results show that the bilateral filtering method can better preserve the details of the effective signal while suppressing the noise interference and effectively improve the data quality for structural damage detection. The effectiveness and feasibility of the bilateral filtering method applied to the noise suppression of vibration signals is verified.

摘要

随着数据采集和信号处理、传感器和无线通信技术的不断进步,大量的研究工作已经利用振动响应信号进行结构损伤检测。然而,在实际项目中,振动信号在采集和传输过程中经常受到噪声干扰,从而降低了损伤识别的准确性。为了有效去除噪声干扰,本文引入了双边滤波,这是图像处理领域中一种常用的提高数据信噪比的滤波方法。该方法基于高斯滤波器,通过将空间接近高斯核函数和数值相似高斯核函数相乘,构建双边滤波核函数,并对邻域数据进行加权替换当前数据,从而实现滤波。通过处理模拟数据和实验数据,引入时频分析方法和时频谱能量计算方法,比较了中值滤波、小波去噪和双边滤波的去噪能力。结果表明,双边滤波方法在抑制噪声干扰的同时,能够更好地保留有效信号的细节,有效提高结构损伤检测的信号质量。验证了双边滤波方法在振动信号噪声抑制中的有效性和可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8672/7085674/421922428625/sensors-20-01423-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验