Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, 17. listopadu 15, 70800 Ostrava Poruba, Czech Republic.
MEDIN, a.s., Vlachovicka 619, 59231 Nove Mesto na Morave, Czech Republic.
Sensors (Basel). 2021 Jun 17;21(12):4161. doi: 10.3390/s21124161.
In the area of musculoskeletal MR images analysis, the image denoising plays an important role in enhancing the spatial image area for further processing. Recent studies have shown that non-local means (NLM) methods appear to be more effective and robust when compared with conventional local statistical filters, including median or average filters, when Rician noise is presented. A significant limitation of NLM is the fact that thy have the tendency to suppress tiny objects, which may represent clinically important information. For this reason, we provide an extensive quantitative and objective analysis of a novel NLM algorithm, taking advantage of pixel and patch similarity information with the optimization procedure for optimal filter parameters selection to demonstrate a higher robustness and effectivity, when comparing with NLM and conventional local means methods, including average and median filters. We provide extensive testing on variable noise generators with dynamical noise intensity to objectively demonstrate the robustness of the method in a noisy environment, which simulates relevant, variable and real conditions. This work also objectively evaluates the potential and benefits of the application of NLM filters in contrast to conventional local-mean filters. The final part of the analysis is focused on the segmentation performance when an NLM filter is applied. This analysis demonstrates a better performance of tissue identification with the application of smoothing procedure under worsening image conditions.
在肌肉骨骼磁共振图像分析领域,图像去噪对于增强空间图像区域以进行进一步处理起着重要作用。最近的研究表明,与传统的局部统计滤波器(包括中值或均值滤波器)相比,当存在瑞利噪声时,非局部均值(NLM)方法似乎更有效和稳健。NLM 的一个显著局限性是,它们有抑制微小物体的倾向,而这些微小物体可能代表着临床重要的信息。出于这个原因,我们提供了一种新颖的 NLM 算法的广泛的定量和客观分析,利用像素和补丁相似性信息以及优化过程来选择最佳滤波器参数,以证明与 NLM 和传统的局部均值方法(包括平均和中值滤波器)相比,具有更高的稳健性和有效性。我们在具有动态噪声强度的可变噪声发生器上进行了广泛的测试,以客观地证明该方法在嘈杂环境中的稳健性,该环境模拟了相关、可变和真实的条件。这项工作还客观地评估了 NLM 滤波器在与传统局部均值滤波器相比的应用中的潜力和优势。分析的最后一部分集中在应用 NLM 滤波器时的分割性能上。这项分析表明,在图像条件恶化的情况下,应用平滑处理程序可以更好地进行组织识别。