Suppr超能文献

染色体重排和端粒危机:基因组不稳定性的引擎。

Chromothripsis and telomere crisis: engines of genome instability.

机构信息

Laboratory of Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.

出版信息

Curr Opin Genet Dev. 2020 Feb;60:41-47. doi: 10.1016/j.gde.2020.02.009. Epub 2020 Mar 6.

Abstract

In the early stages of carcinogenesis cells confront two key suppressive checkpoints; senescence and telomere crisis. Telomere crisis is characterized by massive chromosomal instability and cell death. The genetic instability initiated during crisis leaves detectable scars on cancer genomes, the full scope of which is only just beginning to be appreciated. In particular, the dramatic genome reshuffling phenomenon chromothripsis has been mechanistically linked to the resolution of DNA bridges formed by dicentric chromosomes, and by the shattering of DNA inside micronuclei. Furthermore, an intriguing connection to innate immune signaling has begun to position telomere crisis as a crucial stage not only in the evolution of the cancer genome, but also in the interaction between the genome and the immune system.

摘要

在癌变的早期阶段,细胞面临两个关键的抑制检查点:衰老和端粒危机。端粒危机的特征是大量的染色体不稳定性和细胞死亡。在危机期间引发的遗传不稳定性在癌症基因组上留下了可检测的痕迹,而这些痕迹的全貌才刚刚开始被人们所认识。特别是,戏剧性的基因组重排现象——染色体重排,已经在机制上与双着丝粒染色体形成的 DNA 桥的解决以及微核内 DNA 的碎裂联系起来。此外,与先天免疫信号的有趣联系开始将端粒危机定位为不仅是癌症基因组进化的关键阶段,也是基因组与免疫系统相互作用的关键阶段。

相似文献

1
Chromothripsis and telomere crisis: engines of genome instability.
Curr Opin Genet Dev. 2020 Feb;60:41-47. doi: 10.1016/j.gde.2020.02.009. Epub 2020 Mar 6.
2
Chromothripsis and Kataegis Induced by Telomere Crisis.
Cell. 2015 Dec 17;163(7):1641-54. doi: 10.1016/j.cell.2015.11.054.
3
Catastrophic Endgames: Emerging Mechanisms of Telomere-Driven Genomic Instability.
Trends Genet. 2020 May;36(5):347-359. doi: 10.1016/j.tig.2020.02.001. Epub 2020 Mar 13.
4
Genome rearrangements associated with aberrant telomere maintenance.
Curr Opin Genet Dev. 2020 Feb;60:31-40. doi: 10.1016/j.gde.2020.02.005. Epub 2020 Mar 4.
5
APOBEC3-dependent kataegis and TREX1-driven chromothripsis during telomere crisis.
Nat Genet. 2020 Sep;52(9):884-890. doi: 10.1038/s41588-020-0667-5. Epub 2020 Jul 27.
6
The genomic characteristics and cellular origin of chromothripsis.
Curr Opin Cell Biol. 2016 Jun;40:106-113. doi: 10.1016/j.ceb.2016.03.003. Epub 2016 Mar 26.
7
Structural variant evolution after telomere crisis.
Nat Commun. 2021 Apr 7;12(1):2093. doi: 10.1038/s41467-021-21933-7.
8
The Genomic Characteristics and Origin of Chromothripsis.
Methods Mol Biol. 2018;1769:3-19. doi: 10.1007/978-1-4939-7780-2_1.
9
Telomere dysfunction and chromothripsis.
Int J Cancer. 2016 Jun 15;138(12):2905-14. doi: 10.1002/ijc.30033. Epub 2016 Feb 29.
10
Chromothripsis during telomere crisis is independent of NHEJ, and consistent with a replicative origin.
Genome Res. 2019 May;29(5):737-749. doi: 10.1101/gr.240705.118. Epub 2019 Mar 14.

引用本文的文献

1
The Evolutionary Potential of Chromoanagenesis.
Methods Mol Biol. 2025;2968:615-632. doi: 10.1007/978-1-0716-4750-9_37.
2
DNA Damage, Telomere and Centromere Dysfunction in Chromothripsis Rearrangements.
Methods Mol Biol. 2025;2968:441-455. doi: 10.1007/978-1-0716-4750-9_26.
3
Chromothripsis.
Methods Mol Biol. 2025;2968:3-33. doi: 10.1007/978-1-0716-4750-9_1.
5
Chromosome aberrations cause tumorigenesis through chromosomal rearrangements in a hepatocarcinogenesis rat model.
Cancer Sci. 2024 Nov;115(11):3612-3621. doi: 10.1111/cas.16324. Epub 2024 Sep 8.
6
cGLRs Join Their Cousins of Pattern Recognition Receptor Family to Regulate Immune Homeostasis.
Int J Mol Sci. 2024 Feb 2;25(3):1828. doi: 10.3390/ijms25031828.
7
Ribogenesis boosts controlled by HEATR1-MYC interplay promote transition into brain tumour growth.
EMBO Rep. 2024 Jan;25(1):168-197. doi: 10.1038/s44319-023-00017-1. Epub 2024 Jan 15.
9
Telomere as a Therapeutic Target in Dedifferentiated Liposarcoma.
Cancers (Basel). 2022 May 25;14(11):2624. doi: 10.3390/cancers14112624.

本文引用的文献

1
APOBEC3-dependent kataegis and TREX1-driven chromothripsis during telomere crisis.
Nat Genet. 2020 Sep;52(9):884-890. doi: 10.1038/s41588-020-0667-5. Epub 2020 Jul 27.
2
Mechanisms generating cancer genome complexity from a single cell division error.
Science. 2020 Apr 17;368(6488). doi: 10.1126/science.aba0712.
3
Regulation of cGAS- and RLR-mediated immunity to nucleic acids.
Nat Immunol. 2020 Jan;21(1):17-29. doi: 10.1038/s41590-019-0556-1. Epub 2019 Dec 9.
4
Chromothripsis during telomere crisis is independent of NHEJ, and consistent with a replicative origin.
Genome Res. 2019 May;29(5):737-749. doi: 10.1101/gr.240705.118. Epub 2019 Mar 14.
5
Autophagy induction via STING trafficking is a primordial function of the cGAS pathway.
Nature. 2019 Mar;567(7747):262-266. doi: 10.1038/s41586-019-1006-9. Epub 2019 Mar 6.
6
Autophagic cell death restricts chromosomal instability during replicative crisis.
Nature. 2019 Jan;565(7741):659-663. doi: 10.1038/s41586-019-0885-0. Epub 2019 Jan 23.
7
The ins and outs of telomere crisis in cancer.
Genome Med. 2018 Nov 27;10(1):89. doi: 10.1186/s13073-018-0596-4.
8
Nuclear envelope assembly defects link mitotic errors to chromothripsis.
Nature. 2018 Sep;561(7724):551-555. doi: 10.1038/s41586-018-0534-z. Epub 2018 Sep 19.
9
Shelterin-Mediated Telomere Protection.
Annu Rev Genet. 2018 Nov 23;52:223-247. doi: 10.1146/annurev-genet-032918-021921. Epub 2018 Sep 12.
10
The Multifaceted Role of Chromosomal Instability in Cancer and Its Microenvironment.
Cell. 2018 Sep 6;174(6):1347-1360. doi: 10.1016/j.cell.2018.08.027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验