Baliou Stella, Pelagiadis Iordanis, Apetroaei Miruna-Maria, Vakonaki Elena, Arsene Andreea Letiția, Hatzidaki Eleftheria, Tzatzarakis Manolis N, Ioannou Petros, Tsatsakis Aristides, Stiakaki Eftichia
Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece.
Department of Pediatric Hematology-Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece.
Cancers (Basel). 2025 Jun 10;17(12):1936. doi: 10.3390/cancers17121936.
The nucleoprotein structures known as telomeres provide genomic integrity by protecting the ends of chromosomes. Tumorigenesis is associated with alterations in telomere function and stability. This narrative review provides evidence of the potential prognostic value of telomere length and telomerase in leukemias. On the one hand, oxidative stress and mitochondrial dysfunction can accelerate telomere shortening, leading to higher susceptibility and the progression of leukemia. On the other hand, cytogenetic alterations (such as gene fusions and chromosomal abnormalities) and genomic complexity can result from checkpoint dysregulation, the induction of the DNA damage response (DDR), and defective repair signaling at telomeres. This review thoroughly outlines the ways by which telomere dysfunction can play a key role in the development and progression of four primary leukemias, including chronic lymphocytic leukemia (CLL), chronic myeloid leukemia (CML), and acute leukemias of myeloid or lymphoid origin, highlighting the potential prognostic value of telomere length in this field. However, telomerase, which is highly active in leukemias, can prevent the rate of telomere attrition. In line with this, leukemia cells can proliferate, suggesting telomerase as a promising therapeutic target in leukemias. For this reason, telomerase-based immunotherapy is analyzed in the fight against leukemias, leveraging the immune system to eliminate leukemia cells with uncontrolled proliferation.
被称为端粒的核蛋白结构通过保护染色体末端来提供基因组完整性。肿瘤发生与端粒功能和稳定性的改变有关。这篇叙述性综述提供了端粒长度和端粒酶在白血病中潜在预后价值的证据。一方面,氧化应激和线粒体功能障碍可加速端粒缩短,导致白血病易感性增加和病情进展。另一方面,细胞遗传学改变(如基因融合和染色体异常)以及基因组复杂性可能源于检查点失调、DNA损伤反应(DDR)的诱导以及端粒处有缺陷的修复信号。本综述全面概述了端粒功能障碍在四种原发性白血病(包括慢性淋巴细胞白血病(CLL)、慢性髓性白血病(CML)以及髓系或淋巴系起源的急性白血病)的发生和发展中发挥关键作用的方式,突出了端粒长度在该领域的潜在预后价值。然而,在白血病中高度活跃的端粒酶可以阻止端粒磨损的速度。与此一致的是,白血病细胞能够增殖,这表明端粒酶是白血病中一个有前景的治疗靶点。因此,在对抗白血病的过程中分析了基于端粒酶的免疫疗法,利用免疫系统消除增殖失控的白血病细胞。