Centre for GeoGenetics, Natural History Museum of Denmark, Copenhagen, Denmark.
Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, Toulouse, France.
Mol Biol Evol. 2018 Jun 1;35(6):1520-1535. doi: 10.1093/molbev/msy053.
Identifying the genomic basis underlying local adaptation is paramount to evolutionary biology, and bears many applications in the fields of conservation biology, crop, and animal breeding, as well as personalized medicine. Although many approaches have been developed to detect signatures of positive selection within single populations and population pairs, the increasing wealth of high-throughput sequencing data requires improved methods capable of handling multiple, and ideally large number of, populations in a single analysis. In this study, we introduce LSD (levels of exclusively shared differences), a fast and flexible framework to perform genome-wide selection scans, along the internal and external branches of a given population tree. We use forward simulations to demonstrate that LSD can identify branches targeted by positive selection with remarkable sensitivity and specificity. We illustrate a range of potential applications by analyzing data from the 1000 Genomes Project and uncover a list of adaptive candidates accompanying the expansion of anatomically modern humans out of Africa and their spread to Europe.
确定局部适应的基因组基础对于进化生物学至关重要,并且在保护生物学、作物和动物育种以及个性化医学等领域具有广泛的应用。尽管已经开发了许多方法来检测单个群体和群体对中阳性选择的特征,但高通量测序数据的不断增加需要改进的方法,这些方法能够在单个分析中处理多个,理想情况下是大量的群体。在这项研究中,我们引入了 LSD(仅共享差异的水平),这是一种快速灵活的框架,用于在给定种群树的内部和外部分支上进行全基因组选择扫描。我们使用正向模拟来证明 LSD 可以用极高的灵敏度和特异性识别被阳性选择靶向的分支。我们通过分析来自 1000 基因组计划的数据来说明一系列潜在的应用,并揭示了一组与解剖学上现代人类从非洲扩张及其向欧洲扩散相伴的适应候选者。