Suppr超能文献

一种用于二维材料厚度和横向工程的可扩展方法。

A Scalable Method for Thickness and Lateral Engineering of 2D Materials.

作者信息

Sun Jianbo, Giorgi Giacomo, Palummo Maurizia, Sutter Peter, Passacantando Maurizio, Camilli Luca

机构信息

Department of Physics, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark.

Dipartimento di Ingegneria Civile ed Ambientale, Università degli Studi di Perugia, via G. Duranti 93, 06125 Perugia, Italy.

出版信息

ACS Nano. 2020 Apr 28;14(4):4861-4870. doi: 10.1021/acsnano.0c00836. Epub 2020 Mar 18.

Abstract

The physical properties of two-dimensional (2D) materials depend strongly on the number of layers. Hence, methods for controlling their thickness with atomic layer precision are highly desirable, yet still too rare, and demonstrated for only a limited number of 2D materials. Here, we present a simple and scalable method for the continuous layer-by-layer thinning that works for a large class of 2D materials, notably layered germanium pnictides and chalcogenides. It is based on a simple oxidation/etching process, which selectively occurs on the topmost layers. Through a combination of atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction experiments we demonstrate the thinning method on germanium arsenide (GeAs), germanium sulfide (GeS), and germanium disulfide (GeS). We use first-principles simulation to provide insights into the oxidation mechanism. Our strategy, which could be applied to other classes of 2D materials upon proper choice of the oxidation/etching reagent, supports 2D material-based device applications, , in electronics or optoelectronics, where a precise control over the number of layers (hence over the material's physical properties) is needed. Finally, we also show that when used in combination with lithography, our method can be used to make precise patterns in the 2D materials.

摘要

二维(2D)材料的物理性质强烈依赖于层数。因此,非常需要能够以原子层精度控制其厚度的方法,但此类方法仍然很少见,且仅在有限数量的二维材料中得到证实。在此,我们提出一种简单且可扩展的方法,用于对一大类二维材料进行连续逐层减薄,特别是层状锗磷化物和硫族化物。该方法基于一种简单的氧化/蚀刻工艺,该工艺选择性地发生在最顶层。通过原子力显微镜、X射线光电子能谱、拉曼光谱和X射线衍射实验相结合,我们在砷化锗(GeAs)、硫化锗(GeS)和二硫化锗(GeS₂)上演示了这种减薄方法。我们使用第一性原理模拟来深入了解氧化机制。我们的策略在适当选择氧化/蚀刻试剂后可应用于其他类别的二维材料,支持基于二维材料的器件应用,例如在电子或光电子领域,这些领域需要对层数(进而对材料的物理性质)进行精确控制。最后,我们还表明,当与光刻技术结合使用时,我们的方法可用于在二维材料中制作精确图案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验