Suppr超能文献

利用机器学习模型研究重金属在土壤-作物生态系统中的生物累积及其影响因素

Modelling bioaccumulation of heavy metals in soil-crop ecosystems and identifying its controlling factors using machine learning.

机构信息

Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Unité de Recherche en Science du Sol, INRAE, Orléans, 45075, France; Sciences de la Terre et de l'Univers, Orléans University, 45067 Orléans, France.

Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

出版信息

Environ Pollut. 2020 Jul;262:114308. doi: 10.1016/j.envpol.2020.114308. Epub 2020 Mar 2.

Abstract

The prediction and identification of the factors controlling heavy metal transfer in soil-crop ecosystems are of critical importance. In this study, random forest (RF), gradient boosted machine (GBM), and generalised linear (GLM) models were compared after being used to model and identify prior factors that affect the transfer of heavy metals (HMs) in soil-crop systems in the Yangtze River Delta, China, based on 13 covariates with 1822 pairs of soil-crop samples. The mean bioaccumulation factors (BAFs) for all crops followed the order Cd > Zn > As > Cu > Ni > Hg > Cr > Pb. The RF model showed the best prediction ability for the BAFs of HMs in soil-crop ecosystems, followed by GBM and GLM. The R2 values of the RF models for the BAFs of Zn, Cu, Cr, Ni, Hg, Cd, As, and Pb were 0.84, 0.66, 0.59, 0.58, 0.58, 0.51, 0.30, and 0.17, respectively. The primary controlling factor in soil-to-crop transfer of all HMs under study was plant type, followed by soil heavy metal content and soil organic materials. The model used herein could be used to assist the prediction of heavy metal contents in crops based on heavy metal contents in soil and other covariates, and can significantly reduce the cost, labour, and time requirements involved with laboratory analysis. It can also be used to quantify the importance of variables and identify potential control factors in heavy metal bioaccumulation in soil-crop ecosystems.

摘要

预测和识别控制土壤-作物系统中重金属迁移的因素至关重要。本研究在中国长江三角洲,基于 13 个协变量和 1822 对土壤-作物样本,采用随机森林(RF)、梯度提升机(GBM)和广义线性(GLM)模型对影响重金属(HM)在土壤-作物系统中迁移的先验因素进行建模和识别。所有作物的平均生物积累因子(BAF)顺序为 Cd>Zn>As>Cu>Ni>Hg>Cr>Pb。RF 模型对土壤-作物生态系统中 HM 的 BAF 具有最佳的预测能力,其次是 GBM 和 GLM。RF 模型对 Zn、Cu、Cr、Ni、Hg、Cd、As 和 Pb 的 BAF 的 R2 值分别为 0.84、0.66、0.59、0.58、0.58、0.51、0.30 和 0.17。所有研究中重金属在土壤向作物转移的主要控制因素是植物类型,其次是土壤重金属含量和土壤有机物质。本文所使用的模型可以用来协助预测基于土壤重金属含量和其他协变量的作物重金属含量,并可以显著降低实验室分析的成本、劳动力和时间要求。它还可以用于量化变量的重要性,并识别土壤-作物生态系统中重金属生物累积的潜在控制因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验