García Daniel J, Vildosola Verónica, Cornaglia Pablo S
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Centro Atómico Bariloche and Instituto Balseiro, CNEA, 8400 Bariloche, Argentina.
J Phys Condens Matter. 2020 Jul 1;32(28):285803. doi: 10.1088/1361-648X/ab7e5a.
We compute the magnetocaloric effect (MCE) in the GdTX (T = Sc, Ti, Co, Fe; X = Si, Ge) compounds as a function of the temperature and the external magnetic field. To this end we use a density functional theory approach to calculate the exchange-coupling interactions between Gd ions on each compound. We consider a simplified magnetic Hamiltonian and analyze the dependence of the exchange couplings on the transition metal T, the p-block element X, and the crystal structure (CeFeSi-type or CeScSi-type). The most significant effects are observed for the replacements Ti → Sc or Fe → Co which have an associated change in the parity of the electron number in the three dimensional level. These replacements lead to an antiferromagnetic contribution to the magnetic couplings that reduces the Curie temperature and can even lead to an antiferromagnetic ground state. We solve the magnetic models through mean field and Monte Carlo calculations and find large variations among compounds in the magnetic transition temperature and in the magnetocaloric effect, in agreement with the available experimental data. The magnetocaloric effect shows a universal behavior as a function of temperature and magnetic field in the ferromagnetic compounds after a scaling of the relevant energy scales by the Curie temperature T .
我们计算了GdTX(T = Sc、Ti、Co、Fe;X = Si、Ge)化合物中的磁热效应(MCE),它是温度和外磁场的函数。为此,我们采用密度泛函理论方法来计算每种化合物中Gd离子之间的交换耦合相互作用。我们考虑一个简化的磁哈密顿量,并分析交换耦合对过渡金属T、p区元素X以及晶体结构(CeFeSi型或CeScSi型)的依赖性。对于Ti→Sc或Fe→Co的替换,观察到了最显著的效应,这在三维能级中伴随着电子数奇偶性的变化。这些替换导致对磁耦合的反铁磁贡献,降低了居里温度,甚至可能导致反铁磁基态。我们通过平均场和蒙特卡罗计算求解磁模型,发现化合物之间在磁转变温度和磁热效应方面存在很大差异,这与现有的实验数据一致。在通过居里温度T对相关能量尺度进行标度后,磁热效应在铁磁化合物中表现出作为温度和磁场函数的普遍行为。