College of Information Science and Technology, Northwest University, Xi' an 710069, People's Republic of China. Medical Artificial Intelligence and Automation Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America.
Phys Med Biol. 2020 Jun 12;65(12):125005. doi: 10.1088/1361-6560/ab7e7d.
We propose a novel BIRADS-SSDL network that integrates clinically-approved breast lesion characteristics (BIRADS features) into task-oriented semi-supervised deep learning (SSDL) for accurate diagnosis of ultrasound (US) images with a small training dataset. Breast US images are converted to BIRADS-oriented feature maps (BFMs) using a distance-transformation coupled with a Gaussian filter. Then, the converted BFMs are used as the input of an SSDL network, which performs unsupervised stacked convolutional auto-encoder (SCAE) image reconstruction guided by lesion classification. This integrated multi-task learning allows SCAE to extract image features with the constraints from the lesion classification task, while the lesion classification is achieved by utilizing the SCAE encoder features with a convolutional network. We trained the BIRADS-SSDL network with an alternative learning strategy by balancing the reconstruction error and classification label prediction error. To demonstrate the effectiveness of our approach, we evaluated it using two breast US image datasets. We compared the performance of the BIRADS-SSDL network with conventional SCAE and SSDL methods that use the original images as inputs, as well as with an SCAE that use BFMs as inputs. The experimental results on two breast US datasets show that BIRADS-SSDL ranked the best among the four networks, with a classification accuracy of around 94.23 ± 3.33% and 84.38 ± 3.11% on two datasets. In the case of experiments across two datasets collected from two different institutions/and US devices, the developed BIRADS-SSDL is generalizable across the different US devices and institutions without overfitting to a single dataset and achieved satisfactory results. Furthermore, we investigate the performance of the proposed method by varying the model training strategies, lesion boundary accuracy, and Gaussian filter parameters. The experimental results showed that a pre-training strategy can help to speed up model convergence during training but with no improvement of the classification accuracy on the testing dataset. The classification accuracy decreases as the segmentation accuracy decreases. The proposed BIRADS-SSDL achieves the best results among the compared methods in each case and has the capacity to deal with multiple different datasets under one model. Compared with state-of-the-art methods, BIRADS-SSDL could be promising for effective breast US computer-aided diagnosis using small datasets.
我们提出了一种新颖的 BIRADS-SSDL 网络,该网络将临床认可的乳腺病变特征(BIRADS 特征)集成到面向任务的半监督深度学习(SSDL)中,以便在小数据集的情况下准确诊断超声(US)图像。将乳腺 US 图像转换为距离变换与高斯滤波器相结合的 BIRADS 定向特征图(BFMs)。然后,将转换后的 BFMs 用作 SSDL 网络的输入,该网络通过病变分类指导无监督堆叠卷积自动编码器(SCAE)图像重建。这种集成的多任务学习允许 SCAE 在利用病变分类任务的约束的情况下提取图像特征,而病变分类则通过利用 SCAE 编码器特征与卷积网络来实现。我们通过平衡重建误差和分类标签预测误差来使用替代学习策略训练 BIRADS-SSDL 网络。为了证明我们的方法的有效性,我们使用两个乳腺 US 图像数据集进行了评估。我们将 BIRADS-SSDL 网络的性能与使用原始图像作为输入的传统 SCAE 和 SSDL 方法以及使用 BFMs 作为输入的 SCAE 进行了比较。在两个乳腺 US 数据集上的实验结果表明,BIRADS-SSDL 在四个网络中排名最佳,在两个数据集上的分类准确率约为 94.23±3.33%和 84.38±3.11%。在跨两个机构/和两个不同的 US 设备收集的两个数据集的实验中,所开发的 BIRADS-SSDL 可在不同的 US 设备之间实现泛化,而不会对单个数据集过度拟合,并取得了令人满意的结果。此外,我们通过改变模型训练策略、病变边界精度和高斯滤波器参数来研究所提出方法的性能。实验结果表明,预训练策略可以帮助加快训练过程中的模型收敛速度,但不会提高测试数据集的分类准确率。分类准确率随着分割精度的降低而降低。在每种情况下,所提出的 BIRADS-SSDL 在比较方法中都取得了最佳结果,并且能够在一个模型下处理多个不同的数据集。与最先进的方法相比,BIRADS-SSDL 有望在使用小数据集进行有效的乳腺 US 计算机辅助诊断方面取得成功。