Suppr超能文献

BI-RADS-NET-V2:一种用于超声图像中乳腺癌计算机辅助诊断的复合多任务神经网络,具有语义和定量解释。

BI-RADS-NET-V2: A Composite Multi-Task Neural Network for Computer-Aided Diagnosis of Breast Cancer in Ultrasound Images With Semantic and Quantitative Explanations.

作者信息

Zhang Boyu, Vakanski Aleksandar, Xian Min

机构信息

Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83844, USA.

Department of Nuclear Engineering and Industrial Management, University of Idaho, Idaho Falls, ID 83402, USA.

出版信息

IEEE Access. 2023;11:79480-79494. doi: 10.1109/access.2023.3298569. Epub 2023 Jul 25.

Abstract

Computer-aided Diagnosis (CADx) based on explainable artificial intelligence (XAI) can gain the trust of radiologists and effectively improve diagnosis accuracy and consultation efficiency. This paper proposes BI-RADS-Net-V2, a novel machine learning approach for fully automatic breast cancer diagnosis in ultrasound images. The BI-RADS-Net-V2 can accurately distinguish malignant tumors from benign ones and provides both semantic and quantitative explanations. The explanations are provided in terms of clinically proven morphological features used by clinicians for diagnosis and reporting mass findings, i.e., Breast Imaging Reporting and Data System (BI-RADS). The experiments on 1,192 Breast Ultrasound (BUS) images indicate that the proposed method improves the diagnosis accuracy by taking full advantage of the medical knowledge in BI-RADS while providing both semantic and quantitative explanations for the decision.

摘要

基于可解释人工智能(XAI)的计算机辅助诊断(CADx)能够赢得放射科医生的信任,并有效提高诊断准确性和会诊效率。本文提出了BI-RADS-Net-V2,这是一种用于超声图像中乳腺癌全自动诊断的新型机器学习方法。BI-RADS-Net-V2能够准确区分恶性肿瘤和良性肿瘤,并提供语义和定量解释。这些解释是根据临床医生用于诊断和报告肿块发现的经过临床验证的形态学特征给出的,即乳腺影像报告和数据系统(BI-RADS)。对1192幅乳腺超声(BUS)图像进行的实验表明,该方法通过充分利用BI-RADS中的医学知识提高了诊断准确性,同时为决策提供了语义和定量解释。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验