Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy & Biomaterials, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea.
Division of Chemical Engineering and Materials Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
Microb Cell Fact. 2020 Mar 10;19(1):64. doi: 10.1186/s12934-020-01322-3.
Gamma aminobutyric acid (GABA) is an important platform chemical, which has been used as a food additive and drug. Additionally, GABA is a precursor of 2-pyrrolidone, which is used in nylon synthesis. GABA is usually synthesized from glutamate in a reaction catalyzed by glutamate decarboxylase (GAD). Currently, there are several reports on GABA production from monosodium glutamate (MSG) or glucose using engineered microbes. However, the optimal pH for GAD activity is 4, which is the limiting factor for the efficient microbial fermentative production of GABA as fermentations are performed at pH 7. Recently, DR1558, a response regulator in the two-component signal transduction system was identified in Deinococcus radiodurans. DR1558 is reported to confer cellular robustness to cells by binding the promoter regions of genes via DNA-binding domains or by binding to the effector molecules, which enable the microorganisms to survive in various environmental stress conditions, such as oxidative stress, high osmotic shock, and low pH.
In this study, the effect of DR1558 in enhancing GABA production was examined using two different strategies: whole-cell bioconversion of GABA from MSG and direct fermentative production of GABA from glucose under acidic culture conditions. In the whole-cell bioconversion, GABA produced by E. coli expressing GadBC and DR1558 (6.52 g/L GABA from 13 g/L MSG·HO) in shake flask culture at pH 4.5 was 2.2-fold higher than that by E. coli expressing only GadBC (2.97 g/L of GABA from 13 g/L MSG·HO). In direct fermentative production of GABA from glucose, E. coli ∆gabT expressing isocitrate dehydrogenase (IcdA), glutamate dehydrogenase (GdhA), GadBC, and DR1558 produced 1.7-fold higher GABA (2.8 g/L of GABA from 30 g/L glucose) than E. coli ∆gabT expressing IcdA, GdhA, and GadBC (1.6 g/L of GABA from 30 g/L glucose) in shake flask culture at an initial pH 7.0. The transcriptional analysis of E. coli revealed that DR1558 conferred acid resistance to E. coli during GABA production. The fed-batch fermentation of E. coli expressing IcdA, GdhA, GadBC, and DR1558 performed at pH 5.0 resulted in the final GABA titer of 6.16 g/L by consuming 116.82 g/L of glucose in 38 h.
This is the first report to demonstrate GABA production by acidic fermentation and to provide an engineering strategy for conferring acid resistance to the recombinant E. coli for GABA production.
γ-氨基丁酸(GABA)是一种重要的平台化学品,可用作食品添加剂和药物。此外,GABA 是 2-吡咯烷酮的前体,后者用于尼龙合成。GABA 通常由谷氨酸在谷氨酸脱羧酶(GAD)催化的反应中从谷氨酸合成。目前,有几项关于使用工程微生物从味精(MSG)或葡萄糖生产 GABA 的报告。然而,GAD 活性的最佳 pH 值为 4,这是高效微生物发酵生产 GABA 的限制因素,因为发酵在 pH 7 下进行。最近,在耐辐射球菌中鉴定出双组分信号转导系统中的响应调节剂 DR1558。据报道,DR1558 通过 DNA 结合结构域结合基因的启动子区域或结合效应分子来赋予细胞对细胞的稳健性,从而使微生物能够在各种环境胁迫条件下存活,例如氧化应激、高渗透压和低 pH 值。
在这项研究中,使用两种不同的策略检查了 DR1558 增强 GABA 生产的效果:从 MSG 通过全细胞生物转化生产 GABA 和在酸性培养条件下直接从葡萄糖发酵生产 GABA。在全细胞生物转化中,在 pH 4.5 下摇瓶培养时,表达 GadBC 和 DR1558 的大肠杆菌(从 13 g/L MSG·HO 生产 6.52 g/L GABA)产生的 GABA 比仅表达 GadBC 的大肠杆菌(从 13 g/L MSG·HO 生产 2.97 g/L GABA)高 2.2 倍。在直接从葡萄糖发酵生产 GABA 中,表达异柠檬酸脱氢酶(IcdA)、谷氨酸脱氢酶(GdhA)、GadBC 和 DR1558 的大肠杆菌 ∆gabT 比仅表达 IcdA、GdhA 和 GadBC 的大肠杆菌 ∆gabT 高 1.7 倍(从 30 g/L 葡萄糖生产 2.8 g/L GABA)在 pH 7.0 的摇瓶培养中。大肠杆菌的转录分析表明,DR1558 在 GABA 生产过程中赋予大肠杆菌耐酸能力。在 pH 5.0 下进行表达 IcdA、GdhA、GadBC 和 DR1558 的大肠杆菌补料分批发酵,最终消耗 116.82 g/L 葡萄糖,在 38 小时内获得 6.16 g/L 的最终 GABA 浓度。
这是首次报道通过酸性发酵生产 GABA,并为赋予重组大肠杆菌耐酸能力以生产 GABA 提供了一种工程策略。