[放射组学与人工智能:医学新前沿。]

[Radiomics and artificial intelligence: new frontiers in medicine.].

作者信息

Vernuccio Federica, Cannella Roberto, Comelli Albert, Salvaggio Giuseppe, Lagalla Roberto, Midiri Massimo

机构信息

Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica e di Eccellenza "G. D'Alessandro" (ProMISE), Università di Palermo.

Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata, Università di Palermo.

出版信息

Recenti Prog Med. 2020 Mar;111(3):130-135. doi: 10.1701/3315.32853.

Abstract

Radiomics is a new frontier of medicine based on the extraction of quantitative data from radiological images which can not be seen by radiologist's naked eye and on the use of these data for the creation of clinical decision support systems. The long-term goal of radiomics is to improve the non-invasive diagnosis of focal and diffuse diseases of different organs by understanding links between extracted quantitative imaging data and the underlying molecular and pathological characteristics of lesions. In the last decade, several studies have highlighted the enormous potential of radiomics in both tumoral and non-tumoral diseases of many organs and systems including brain, lung, breast, gastrointestinal and genitourinary tracts. The enormous potential of radiomics needs to be pursued with the methodological rigor of scientific research and by integrating radiological data with other medical disciplines, in order to improve personalized patient management.

摘要

放射组学是医学的一个新领域,它基于从放射图像中提取放射科医生肉眼无法看到的定量数据,并利用这些数据创建临床决策支持系统。放射组学的长期目标是通过理解提取的定量成像数据与病变潜在分子和病理特征之间的联系,改善对不同器官局灶性和弥漫性疾病的非侵入性诊断。在过去十年中,多项研究突出了放射组学在包括脑、肺、乳腺、胃肠道和泌尿生殖道在内的许多器官和系统的肿瘤性和非肿瘤性疾病中的巨大潜力。放射组学的巨大潜力需要通过科学研究的方法严谨性来挖掘,并将放射学数据与其他医学学科相结合,以改善个性化的患者管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索