文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

放射组学和人工智能在肺癌治疗中的精准医学应用。

Radiomics and artificial intelligence for precision medicine in lung cancer treatment.

机构信息

Department of Surgery and Cancer, The Commonwealth Building, Du Cane Road, Hammersmith Campus, Imperial College, London W12 0NN, UK; Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK.

North West London Pathology, Charing Cross Hospital, Fulham Palace Rd, London W6 8RF, UK.

出版信息

Semin Cancer Biol. 2023 Aug;93:97-113. doi: 10.1016/j.semcancer.2023.05.004. Epub 2023 May 19.


DOI:10.1016/j.semcancer.2023.05.004
PMID:37211292
Abstract

Lung cancer is the leading cause of cancer-related deaths worldwide. It exhibits, at the mesoscopic scale, phenotypic characteristics that are generally indiscernible to the human eye but can be captured non-invasively on medical imaging as radiomic features, which can form a high dimensional data space amenable to machine learning. Radiomic features can be harnessed and used in an artificial intelligence paradigm to risk stratify patients, and predict for histological and molecular findings, and clinical outcome measures, thereby facilitating precision medicine for improving patient care. Compared to tissue sampling-driven approaches, radiomics-based methods are superior for being non-invasive, reproducible, cheaper, and less susceptible to intra-tumoral heterogeneity. This review focuses on the application of radiomics, combined with artificial intelligence, for delivering precision medicine in lung cancer treatment, with discussion centered on pioneering and groundbreaking works, and future research directions in the area.

摘要

肺癌是全球癌症相关死亡的主要原因。在介观尺度上,它表现出一些肉眼通常难以察觉的表型特征,但可以通过医学成像无创地捕捉到作为放射组学特征,这些特征可以形成一个适合机器学习的高维数据空间。放射组学特征可以被利用并应用于人工智能范式中,以对患者进行风险分层,并预测组织学和分子发现以及临床结果测量,从而促进精准医学,改善患者治疗效果。与基于组织采样的方法相比,基于放射组学的方法具有非侵入性、可重复性、更便宜和更少受肿瘤内异质性影响的优势。本综述重点介绍了放射组学与人工智能相结合在肺癌治疗中提供精准医学的应用,讨论集中在该领域的开创性和突破性工作以及未来的研究方向。

相似文献

[1]
Radiomics and artificial intelligence for precision medicine in lung cancer treatment.

Semin Cancer Biol. 2023-8

[2]
[Study Progress of Radiomics in Precision Medicine for Lung Cancer].

Zhongguo Fei Ai Za Zhi. 2019-6-20

[3]
Application of Radiomics and Artificial Intelligence for Lung Cancer Precision Medicine.

Cold Spring Harb Perspect Med. 2021-8-2

[4]
Role of artificial intelligence in the care of patients with nonsmall cell lung cancer.

Eur J Clin Invest. 2018-2-19

[5]
Combining liquid biopsy and radiomics for personalized treatment of lung cancer patients. State of the art and new perspectives.

Pharmacol Res. 2021-7

[6]
Structural and functional radiomics for lung cancer.

Eur J Nucl Med Mol Imaging. 2021-11

[7]
[Radiomics and artificial intelligence: new frontiers in medicine.].

Recenti Prog Med. 2020-3

[8]
Nuclear medicine radiomics in precision medicine: why we can't do without artificial intelligence.

Q J Nucl Med Mol Imaging. 2020-9

[9]
Radiomics with artificial intelligence for precision medicine in radiation therapy.

J Radiat Res. 2019-1-1

[10]
Artificial intelligence-based MRI radiomics and radiogenomics in glioma.

Cancer Imaging. 2024-3-14

引用本文的文献

[1]
MRI-based deep learning radiomics in predicting histological differentiation of oropharyngeal cancer: a multicenter cohort study.

Clin Transl Oncol. 2025-9-3

[2]
Systematic review and meta-analysis of artificial intelligence for image-based lung cancer classification and prognostic evaluation.

NPJ Precis Oncol. 2025-8-26

[3]
Colorectal cancer liver metastases: A radiologic point of view.

World J Gastrointest Oncol. 2025-8-15

[4]
Multimodal prediction of tyrosine kinase inhibitors therapy outcomes in advanced EGFR-mutated NSCLC patients.

J Transl Med. 2025-8-18

[5]
Computed tomography radiomics of intratumoral and peritumoral microenvironments for identifying the invasiveness of subcentimeter lung adenocarcinomas.

BMC Med Imaging. 2025-8-18

[6]
Recent Advances in PET and Radioligand Therapy for Lung Cancer: FDG and FAP.

Cancers (Basel). 2025-8-1

[7]
Machine learning-driven prognostic prediction model for composite small cell lung cancer: identifying risk factors with network tools and validation using SEER data and external cohorts.

Front Oncol. 2025-7-23

[8]
Radiomics-based machine learning for differentiating lung squamous cell carcinoma and adenocarcinoma using T1-enhanced MRI of brain metastases.

Front Oncol. 2025-7-23

[9]
A multimodal nomogram for benign-malignant discrimination of lung-RADS ≥4A nodules: integration of oxygen enhanced zero echo time MRI, CT radiomics, and clinical factors.

Front Oncol. 2025-7-21

[10]
Development and validation of MRI-based radiomics model for clinical symptom stratification of extrinsic adenomyosis.

Ann Med. 2025-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索