Zhou Zhifan, Margalit Yair, Moukouri Samuel, Meir Yigal, Folman Ron
Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
Research Laboratory of Electronics, MIT-Harvard Center for Ultracold Atoms, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Sci Adv. 2020 Feb 28;6(9):eaay8345. doi: 10.1126/sciadv.aay8345. eCollection 2020 Feb.
The geometric phase due to the evolution of the Hamiltonian is a central concept in quantum physics and may become advantageous for quantum technology. In noncyclic evolutions, a proposition relates the geometric phase to the area bounded by the phase-space trajectory and the shortest geodesic connecting its end points. The experimental demonstration of this geodesic rule proposition in different systems is of great interest, especially due to the potential use in quantum technology. Here, we report a previously unshown experimental confirmation of the geodesic rule for a noncyclic geometric phase by means of a spatial SU(2) matter-wave interferometer, demonstrating, with high precision, the predicted phase sign change and π jumps. We show the connection between our results and the Pancharatnam phase. Last, we point out that the geodesic rule may be applied to obtain the red shift in general relativity, enabling a new quantum tool to measure gravity.
由哈密顿量演化产生的几何相位是量子物理学中的一个核心概念,并且可能对量子技术具有优势。在非循环演化中,一个命题将几何相位与相空间轨迹以及连接其端点的最短测地线所围成的面积联系起来。在不同系统中对这一测地线规则命题进行实验验证具有极大的意义,特别是考虑到其在量子技术中的潜在应用。在此,我们通过空间SU(2)物质波干涉仪报告了对非循环几何相位的测地线规则的一项此前未展示过的实验证实,高精度地证明了预测的相位符号变化和π跳跃。我们展示了我们的结果与潘查拉特纳姆相位之间的联系。最后,我们指出测地线规则可用于获得广义相对论中的红移,从而实现一种测量引力的新型量子工具。