Baba Takeshi, Sodeyama Keitaro, Kawamura Yoshiumi, Tateyama Yoshitaka
Frontier Research Center, Toyota Motor Corporation, 1200, Mishuku, Susono, Shizuoka, 410-1193, Japan.
Center for Materials Research by Information Integration (cMI2), Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki 305-0044, Japan and Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan.
Phys Chem Chem Phys. 2020 May 20;22(19):10764-10774. doi: 10.1039/c9cp06608j.
Understanding and the control of Li-ion (Li+) transport across the interface between the anode and solid electrolyte interphase (SEI) film or electrolyte is a key issue in battery electrochemistry and interface science. In this study, we investigated the structural, electronic and free energy properties of Li+ migration between a Li-intercalated graphite anode LiCx and Li2CO3 SEI film, by using ab initio molecular dynamics and free energy calculations. We compared three types of graphite edges: H-, OH- and mixed (H, OH, COOH)-terminations, and three cases of transferred Li-ions: Li+ constructing the SEI, excess Li+ and excess Li0 (excess Li+ + e- in anode). After validation of our calculations with Li2CO3 and LiCx bulk systems, we sampled the interfacial structures under thermodynamic equilibrium and demonstrated that the OH- and mixed-terminations had larger binding energies. The calculated free energy profiles of Li+ intercalation from the Li2CO3 SEI to LiC24 showed barriers larger than 1.2 eV irrespective of the terminations and Li+ cases. We also clarified that the charges of Li ions did not change much upon the intercalation. Based on these results and the calculated Li chemical potential, we constructed the probable free energy profile of Li+ between the anode and cathode under charging and discharging. This profile model suggest a possible electric field approximation for the charging stage, and the resultant free energy profiles with such fields gave a ca. 0.5 eV barrier under charging, which was consistent with the experimental values. The present picture will give a crucial insight into Li-ion transport at the battery interfaces.
理解并控制锂离子(Li⁺)在阳极与固体电解质界面膜(SEI)或电解质之间的传输,是电池电化学和界面科学中的一个关键问题。在本研究中,我们通过使用从头算分子动力学和自由能计算,研究了嵌入锂的石墨阳极LiCₓ与Li₂CO₃ SEI膜之间Li⁺迁移的结构、电子和自由能性质。我们比较了三种类型的石墨边缘:H-、OH-和混合(H、OH、COOH)-终止,以及三种转移锂离子的情况:构建SEI的Li⁺、过量Li⁺和过量Li⁰(阳极中的过量Li⁺ + e⁻)。在用Li₂CO₃和LiCₓ本体系统验证我们的计算后,我们在热力学平衡下对界面结构进行了采样,并证明OH-和混合终止具有更大的结合能。从Li₂CO₃ SEI到LiC₂₄的Li⁺嵌入的计算自由能分布显示,无论终止类型和Li⁺情况如何,势垒都大于1.2 eV。我们还阐明了锂离子在嵌入时电荷变化不大。基于这些结果和计算出的锂化学势,我们构建了充放电时阳极和阴极之间Li⁺可能的自由能分布。该分布模型表明充电阶段可能存在电场近似,并且具有这种电场的所得自由能分布在充电时给出了约0.5 eV的势垒,这与实验值一致。本文的描述将为电池界面处的锂离子传输提供关键见解。